BKL TRANSFAC

 Biobase의 대표적인 제품군인 TRANSFAC은 eukaryotic gene regulation을 분석하기 위한 최적의 기초 데이터를 제공하고 있다. Transcription factors, miRNAs, 그리고 이들과 관련된 유전자의 프로모터 정보를 비롯하여 ChIP-Seq 데이터로부터 1,000,000건 이상의 binding sites 정보, 57,000건 이상의 human RNA polymeraseII의 위치정보를 포함하고  있다. 이들 정보는 모두 실험적으로 증명 되었거나 논문에 게재된 정보를 전문가의 리뷰를 통해 정확하면서도 통합적인 이해를 할 수 있도록 하였다.

 2010년 현재 TRANSFAC®의 데이터베이스는 DNA binding, expression 그리고 regulation에 관련한 전문가의 manual curation을 다음과 같이 수행하였다.

사용자 삽입 이미지

이들 데이터는 실험적으로

  • transcription factor binding site나 혹은 composite elements를 증명하고자       할 때,
  • promoter sequence를 찾고자 할 때
  • miRNA targets을 찾고자 할 때
  • 관심 있는 영역에 binding 가능한 transcription factor를  찾고자 할 때
  • transcription factor들 간의 조절을 알고자 할 때
 실험에 앞서 가능한 factor들의 기초 정보를 제공하게 된다. 따라서 microarray를 통한 유전자 발현 패턴을 분석했다면 동일한 발현 패턴을 보이는 유전자들의 상관관계를 분석하는데 많이 이용되며, 약리 반응이나 신물질의 target을 밝히는 데에도 기초 자료로 인용되고 있다.


TRANSFAC®의 데이터 구성


 TRANSFAC® Professional은 공개된 데이터에 비해 약 4년 정도의 데이터가 업데이트되어 있는 상태로 그 데이터양은 promoter서열이 약 280,000건, 700,000건의 ChIP-chip/-Seq 데이터를 더 포함하고 있다(figure 1).

사용자 삽입 이미지
Figure 1. Public database와 Professional version의 데이터양의 차이


이들의 자세한 내용은 figure 2에서 보여 지는 것과 같이 transcription factor의 서열 정보를 비롯한 binding 가능한 site정보, 도메인정보, regulation 정보를 총체적으로 담고 있다.

사용자 삽입 이미지
Figure 2. Transcription factor feature. Transcription factor의 서열 정보, 종 정보, 조직 정보, 도메인 정보, binding site 정보, interaction protein 정보, regulation정보를 총체적으로 서비스하고 있다.

 GO category정보 및 pathway정보도 가능한 모두 서비스가 되고 있어 세포내 생물학적 기능을 종합적으로 분석하고자 할 때 기초자료로 많은 정보를 주고 있다(figure3).

사용자 삽입 이미지
Figure 3. Transcription factor의 function 정보. Factor간의 interaction정보, pathway 정보, inhibitor 및 activator와 같은 regulation 정보 등을 문헌자료를 통해 데이터베이스화하고 서비스한다.



미지의 서열에 binding 가능한 transcription factor search.


 특정한 발현 패턴을 보이는 유전자의 발현 조절 메커니즘을 분석 하고자 할 때 기본적으로 유전자의 upstream 영역에서 작용하는 transcription factor(TF)를 알아보게 된다. TRNASFAC®은 기본적인 transcription factor 및 binding site에 대한 정보를 제공함과 동시에 미지 서열에 binding 가능한 transcription factor를 예측할 수 있는 MatchTM, PatchTM, 그리고 Catch® 프로그램도 제공하고 있다(Figure 4).

사용자 삽입 이미지
Figure 4. TRANSFAC Professional의 TF search를 위한 PATCH. Pattern match를 통한 미지의 서열에 binding 가능한 TF를 search한다. 이때 false positive를 최소화하기 위해 찾고자 하는 TF의 종 정보를 제한하여 식물 유전자의 경우 식물 데이터베이스를 사용하고 mamalian 유전자의 경우 mamalian 데이터베이스를 사용한다. 또한 특정 찾고자 하는 TF만을 대상으로 할 경우 분석자에 의해 선택된 TF만으로 구성된 프로파일을 제작하여 분석할 수도 있다.


 MatchTM는 TF의 binding site를 matrix로 구성하여 찾는 방법이며, PatchTM는 서열의 pattern match 방법을 이용하여 찾는 방법이다. Catch®는 composite elements를 찾고자 할 때 사용하게 되는데 보통 이들 프로그램을 모두 사용하여 가능한 모든 TF를 찾고 실험에 이용한다. 또한 실험적으로 하나하나 규명할 수도 있으나 유전체 전체 유전자를 대상으로 분석하고자 할 때, 웹으로 운영되는 다음 프로그램에 서열을 하나씩 분석하기는 매우 어려우므로 local 서버나 PC에 설치하여 batch로 서열을 분석할 수도 있다. 이후 얻어진 유전자의 upstream 영역에서 작용하는 TF의 profile정보는 통계적 기법을 통해 유의한 TF를 선별하기도 하고, 데이터베이스화하기도 한다.

또한 얼마 전 덴마크의 CLCBio사와의 협력을 통해 CLCMainWorkbench 혹은 CLCGenomicsWorkbench의 plug-in 기능을 통해 TF정보를 visualization 할 수도  있게 되었다. 따라서 NGS에 의한 RNA-seq 정보 및 유전자 발현정보와 함께 전사조절 ,    메커니즘까지 확대하여 함께 분석할 수 있는 최적의 데이터를 제공하고 있는 것이다.

사용자 삽입 이미지




Posted by 人Co

2010/04/27 14:55 2010/04/27 14:55

BIOBASE 소개

인 맞춤 의학시대를 가능케 한 NGS(Next Generation Sequencing) 기술로 인해 이제는 더 이상 유전자 서열정보만을 밝히는 것이 큰 의미를 내포하지 않는다. 생명과학 분야의 궁극적인 목표인 생명현상의 이해를 위해서는 쏟아지는 서열정보를 잘 꿰어 그들의 매우 정교한 세포내 역할을 규명해야 한다. (주)인실리코젠에서는 이러한 연구를 위해 필수적으로 요구되는 몇 가지 데이터베이스를 소개하고자 한다.

 최근 nature에 발표된 Ancient human genome project에 이용된 전사 조절인자 데이터베이스로 유명한 TRANSFAC을 서비스하고 있는 Biobase는 전문가 리뷰에 의한 생물학적 데이터베이스와 소프트웨어 및 생명과학분야의 분석 서비스에 뛰어난 세계적 선두 기업이다.

사용자 삽입 이미지
1986년 시작되어 1997년 German Research Center for Biotechnology에서 파생되어 설립된 이후로 전사조절인자를 비롯한 유전자 조절 메카니즘 데이터베이스 분야에서 독보적인 위치를 차지해 오고 있다. 의학을 비롯한 제약회사 및 연구기관을 포함한 전세계 수많은  고객에게 서비스를 제공하고 있으며, 생명과학 분야의 다양한 논문에서 현재의 데이터가 인용되고 있다.

 Biobase 제품군의 가장 큰 특징은 생물학 전문가들에 의한 데이터의 검토와 수정을 통해 지속적으로 업데이트된다는 것이다. 날마다 논문을 통해 쏟아지는 생명과학 분야의 다양한 데이터를 전문가의 리뷰를 통해 BIOBASE Knowledge Libray(BKL)로 재탄생 시켜 제공하고 있고 이들 데이터의 이해를 극대화 시킬수 있는 ExPlainTM을 서비스 함으로써 drug 혹은 biomarker 개발에 많은 연구자들이 효율적으로 활용 할 수 있도록 하고 있다. 그 서비스 목록은 크게 세 가지로 분류 된다.

1) BKL TRANSFAC

2) BKL PROTEOME

3) HGMD professional


 첫 번째,  TRANSFAC은 유전자 조절분야에서 세계 유일의 데이터베이스이며 표준이 될 정도의 고품질 데이터를 보장하고 있다. 이러한 평가는 The U.S. Bioinformatics Market의 보고에서도 TRANSFAC®을  주요 생물정보 툴 중 하나로 꼽는 등 세계적으로 높은 평가를 받고 있다. TRANSFAC suite에는 전사 조절인자와 관련된 모든 정보를 담고 있다.
Transcription factor, transcription factor binding site, 그리고 composite elements의 총체적인 정보로 구성되어 있으며, 유전자 돌연변이와 유전자 돌연변이에 관련된 질병에 관한 데이터베이스인 PathoDBTM 그리고 regulatory chromatin domain 정보를 담고 있는 S/MARtDBTM도 포함하고 있다.

사용자 삽입 이미지

 두 번째, PROTEOME은 단백질 수준의 조절, 즉 pathway정보를 제공하고 있다. 6개의 데이터베이스로 YPD(s.cerevisiae), HumanPSD, GPCR-PD, WormPD, MycoPath PD 그리고 PombePD(s.pombe)로 구성되어 기능이 밝혀진 최대한의 단백질을 활용하여 세포내에서의 pathway 조절 메카니즘을 총체적으로 이해 할 수 있도록 정보를 제공하고 있다. 이들 데이터는 관련 질병정보를 비롯한 참조논문과 데이터의 품질 정보를 모두 제공함으로써 다양한 생명과학 분야에서 인용되고 있다.

 마지막 HGMD는 human의 유전자 돌연변이 데이터베이스로 유전에 의한 질병관련 정보를 서비스하고 있다. Germ-line 돌연변이 데이터를 중심으로 주어진 유전자와 관련된 돌연변이 정보를 제공하고 있다. 2006년 이후 꾸준한 데이터베이스의 축척으로 2009년 3월 95,000건에 달하는 돌연변이 정보를 보유하고 있으며, 병변을 비롯한 서열정보, 유전체에서의 위치정보, 본래 특성 정보등 상세한 관련 정보를 제공 하고 있다.

 앞서 밝힌 내용과 같이 Biobase 제품군은 세포내 발현 조절과 관련된 총체적인 데이터베이스를 제공한다. 전사 수준의 발현조절인 promoter 분석(TRANSFAC), 단백질 수준의 pathway 분석(PROTEOM), 이후 phenotype과 관련된 유전적 질병 정보(HGMD) 등을
제공하며 다양한 생명과학 분야에 고품질의 데이터를 제공하고 있다.

다음 주부터 앞으로 3주 동안, 오늘 간략하게 말씀드린 Biobase 제품군의 세 가지 데이터베이스에 대하여 한 주에 하나씩 좀 더 자세한 내용으로 소개해드릴 예정입니다.  

여러분들의 많은 관심 부탁드립니다.
감사합니다.






Posted by 人Co

2010/04/19 15:07 2010/04/19 15:07

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 연재에서는 어제에 이어 Next Generation Sequencing의 두 번째 Application인 Expression study에 대한 내용으로 Differentially Expressed Genes(DEGs) Functional annotation 중에 Text-mining을 통한 대사회로 분석Promoter 영역 분석을 통한 발현 조절 메카니즘 분석에 대해 알아보겠습니다.

B. Text-mining을 통한 대사회로 분석


 대사회로 분석은 세포내 유전자들이 생물학적으로 기능이 유사하거나 동일한 조절 기작을 통해 동일 시간상에서 유사한 발현 양상을 보일 것이라는 가정 하에 이루어진다. 선별된 유전자들(DEGs) 사이에서의 대사회로 분석을 통하여 대사회로 내에서 유전자들의 발현양상에 따라 up-regulation 혹은 down-regulation 되는지 분석할 수 있다. 또한 이들 간의 signal 관계가 upstream에 존재하는지 down- stream에 존재하는지 여부를 분석할 수 있다. 이러한 분석이 가능한 프로그램으로는 Ariadne사의 Pathway Studio가 있다[16].

사용자 삽입 이미지
그림 7. DEG 유전자의 pathway 분석

DEGs를 이용한 pathway 분석으로 유전자간의 조절 관계와 upsteam, downstream 단백질을 GUI를 통한 그래픽으로 확인이 가능하다[16].

Pathway Studio는 차등발현유전자들을 조절하는 상위 조절인자를 분석하거나 차등발현유전자들이 공통적으로 작용하고 있는 질병, 세포내 프로세스 등을 분석할 수 있는 유용한 프로그램이다. 


C. Promoter 영역 분석을 통한 발현 조절 메카니즘 분석


 선별된 유전자에 대해서 유전자의 발현 양을 조절하고 세포내의 항상성 유지를 위해 여러 유전자들 간의 긴밀한 네트워크를 통해 이뤄지는 유전자 조절 메카니즘을 분석한다. 유전자의 구조 중에서 특히 유전자의 기능에 중요한 영향을 미치는 부분은 유전자의 발현을 조절하는 프로모터 영역이다. 프로모터를 포함한 유전자의 upstream에 존재하는 전사인자  binding site의 예측을 통해 유전자의 발현 조절이 어떠한 메카니즘을 통해 이뤄지는지를 분석한다.

사용자 삽입 이미지
그림 8. Upstream regulation 분석.
TransFac을 활용한 DEGs의 upstream에 존재하는 공통된 transcription factor를 탐색

가장 대표적인 프로그램으로 BIOBASE사의 TRNASFAC을 꼽을 수 있다[15]. 실험적으로 검증된 전사인자들로 생물 전문가의 꼼꼼한 검증을 통해 구축된 데이터베이스는 현재 인간을 중심으로 식물, 효모R에 이르기까지 계속해서 확대 되고 있다. TRANSFAC의 서브 프로그램인 Patch와 Match를 활용하면 미지의 유전자 upstream 서열의 binding 가능한 전사인자를 검색할 수 있고, 이는 유전자 네트워크에서의 생물학적인 의미를 찾을 수 있는 기초 데이터가 된다.

다음 연재에서는 유전자와 엑손의 발현 및 발현된 유전자의 각종 변이 등을 한 번에 연구할 수 있는 RNA-Seq기술에 대해 알아보겠습니다.

많은 관심 부탁드립니다.

참고문헌

1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 7, 621-628.
2. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40, 47–59
3. Rensink WA, Lee Y, Liu J, Iobst S, Ouyang S, Buell CR. (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics. 6, 124
4. Ronning,C.M. et al. (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol. 131, 419–429
5. Guo J, Zhu P, Wu C, Yu L, Zhao S, Gu X. (2003) In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet Genome Res. 103, 58-62
6. Benjamini, Y., Daniel Yekutieli. (2001) The control of the false discovery rate in multiple hypotheses testing under dependency. Annal. Stat. 4(29), 1165–1188
7. Tsai CA, Hsueh HM, Chen JJ. (2003) Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics. 59, 1071-81
8. Audic S, Claverie JM. (1997) The significance of digital gene expression profiles. Genome Res. 7, 986–995
9. Roche 454 : Products & Solutions - Multiplexing
(http://www.454.com/products-solutions/experimental-design-options/multiplexing.asp)
10. Tatusov RL, Koonin EV, Lipman DJ. (1997) A genomic perspective on protein families. Science. 278, 631-637
11. Kato T, Murata Y, Miura K, Asai K, Horton PB, Koji T, Fujibuchi W. (2006) Network-based de-noising improves prediction from microarray data, BMC Bioinformatics. 7, S4
12. Noh SJ, Lee K, Paik H, Hur CG. (2006) TISA: tissue-specific alternative splicing in human and mouse genes. DNA Res. 5, 229-243
13. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data, Genome Biol. 4, R28
14. GeneSpring GX : Products & Services - GeneSpring GX Software
(http://www.chem.agilent.com/en-US/products/software/lifesciencesinformatics/genespringgx/pages/default.aspx)
15. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prüss M, Reuter I, Schacherer F. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research. 28, 316-319
16. PathwayStudio : Products-pathway Studio
(http://www.ariadnegenomics.com/products/pathwaystudio/)
17. Eveland AL, McCarty DR, Koch KE. (2007) Transcript profiling by 3'-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146, 32-44.
18. Torres TT, Metta M, Ottenwälder B, Schlötterer C. (2008) Gene expression profiling by massively parallel sequencing. Genome Res. 1, 172-7.
19. Vega-Arreguín JC, Ibarra-Laclette E, Jiménez-Moraila B, Martínez O, Vielle-Calzada JP, Herrera-Estrella L, Herrera-Estrella A. (2009) Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics. 10, 299.
20. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature. 2456, 70-76.
21. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 302, 2141-2144.
22. Ledford H. (2008) Human genes are multitaskers. Nature. 456, 9.
23. CLC Genomics Workbench: RNA-Seq analysis
(http://www.clcbio.com/index.php?id=1330&manual=RNA_Seq_analysis.html)

Posted by 人Co

2010/03/03 10:03 2010/03/03 10:03