관련기사
고추 매운맛 유전자, 국내 연구진이 밝혀냈다 2014.01.22 티브이데일리
고추 유전체서열 국내 독자 기술로 완성 2014.01.21 정책브리핑
고추 유전체서열 국내 독자 기술로 완성 2014.01.20 아시아투데이
고추 표준 유전체 염기서열 국내 기술로 완성 2014.01.20 연합뉴스
좀 더 맵고 맛있는 고추 나온다 2014.01.20 동아사이언스

논문바로보기
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2877.html

'고추' 하면 떠오르는 친근감은 비단 우리나라 뿐만이 아닐 것입니다. 고추는 세계적으로 사랑 받고 있고 영양학적인 가치 또한 우수하여 토마토, 감자와 함께 대표적인 작물 중 하나로 꼽히고 있습니다. 그러나 생물학자들에게는 대중적인 선호도 이외에 토마토, 감자와 함께 고추에서 밝히고자 하는 흥미로운 관심 거리가 있습니다. 서로 닮은 듯 아닌 듯 한 이들 세 작물은 모두 가지과 (Solanaceae)에 속하는 것으로 진화와 육종을 통해 얻어진 공통된 특성과 특이적인 특성을 각각 분자적으로 밝히기에 좋은 모델이 되기 때문인데요, 특히 토마토와 고추의 경우 흥미로운 연구거리가 가득합니다.
첫번째, 토마토의 경우 사과나 바나나와 같이 에틸렌 가스에 의해 후숙성이 촉진되는 climateric fruit 인 반면, 고추는 포도와 같이 후숙성이 촉진 되지 않는 non-climateric fruit으로 같은 가지과 작물로써 서로 비슷한 유전자 세트를 가지면서도 서로 다른 형태의 숙성과정을 거치게 되는 메카니즘은 무엇일까?
두번째, 토마토의 유전체는 약 900Mb정도인데 반해 고추는 약 3Gb에 달하는 거대한 유전체 사이즈를 갖는 이유는 무엇일까?
세번째, 고추의 대중적인 인기의 근간이 되는 매운맛 성분인 캡사이신의 생합성 경로는 어찌 될까? 이 런 모든 질문에 대한 해답이 최근 생물정보 컨설팅 전문기업인 (주)인실리코젠에서도 참여한 서울대 최도일 교수님 연구팀에서 Nature genetics 에 발표한 논문 Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2877.html 에서 모두 해결되었습니다.


논문에 많은 내용들이 있지만 그 중 후숙성 과실인 토마토와 그렇지 않은 고추와의 과실 숙성 메카니즘의 차이를 보여주는 마지막 메인 figure를 살펴보면, ripening 관련 유전자는 두 종 모두에서 보존되어 있으나 그림에서 보여지는 것과 같이 mRNA상의 발현의 차이로 (group I) 표현형의 차이가 유발된 것으로 나타났습니다. 이 중 주요 유전자는 ethylene이 생성되는 과정에 수반되는 유전자들의 발현이 고추에서 모두 저하되어 ethylene 생성이 저하되고 그로 인해 ethylene에의해 repression되는 CCS(capsanthin-capsorubin synthase)의 발현이 tomato에 비해 월등히 높게 나타나고, 결국 pepper-specific carotenoids인 Capsanthin, capsorubin의 합성이 높아 tomato와는 다른 표현형을 나타냈습니다. 반면, tomato에서는 CCS와 ortholog 관계를 갖는 CYC-B(chromoplast-specific lycopene beta-cyclase) 유전자의 발현이 ripening 과정 동안 ethylene의 높은 합성으로 인해 억제됨을 나타냄으로써 그 메커니즘을 밝혔습니다.


Comparative fruit ripening



이 외에도 고추에 많은 비타민 함량의 메커니즘이라던가, 토마토와 고추의 과실이 물러지는 차이의 원인 메커니즘과 같은 유전체 전문가가 아니더라도 흥미를 가질 만한 많은 내용이 담겨 있습니다. 물론 유전체 전문가(?)의 입장에서도 소중한 정보가 가득합니다. 사실 제가 마지막 figure만을 소개한 이유는 이 하나의 figure를 위해 수행되어야 하는 genome assembly(유전체 서열 완성), gene structure분석(유전자의 서열 및 구조, 유전자 기능, 유전체내 전체 유전자 세트), gene family분석(ortholog, paralog분석) , genome expansion분석( repetitive sequence분석), gene expression 분석(transcription factor분석, RNAseq 분석, pathway 분석), genome variant 분석(SNP, indel 분석), phylogeny 분석과 같은 많은 분석이 수반되어야 하고, 이러한 정보는 supplementary information에서 제공하고 있는 table 54개, figure 49개에 고스란히 담겨져 있음을 알려드리고 싶어서 입니다. 이들 데이터는 마지막 figure와 같은 많은 생물학자들에게 실마리를 제공할 리소스 데이터로 제공이 될 것이기에 그 잠재력이 더욱 큽니다.

Gene structure분석 파이프라인

유전자 구조 분석 파이프라인으로 고추 유전체 분석을 위해 고추의 mRNA(RNAseq, ESTs)서열,  단백질 서열, 토마토 및 감자의 단백질 서열, 애기장대, 포도 및 가지과 작물의 단백질 서열을 이용한 Evidence gene modeling과 여러개의 ''ab initio'' gene modeling (gene prediction)이 함께 수행되어 이들의 공통된 유전자 모델을 선정하는 combined gene modeling이 수행되었습니다. - (주)인실리코젠 지원


마지막으로 이번 연구의 가장 큰 성과라면, 순수 국내 연구진의 기술로 이뤄졌다는 점과 생물정보의 학문적 발전입니다. 식물의 유전체에는 유전자 영역 이외에 repeat 영역이 포유류나 균류, 미생물에 비해 매우 많이 존재하기 때문에 실제 유전체 서열을 완성하기에 매우 까다로운 조건을 갖고 있습니다. 단적으로 토마토, 감자의 경우 국제 컨소시엄을 통해 전세계 연구진의 협업에 의해 이뤄진 점만 보더라도 고추 유전체의 완성은 의미가 크다고 할 수 있습니다. 더욱이 유전체 크기가 토마토에 비해 3배이상 커지고 커진 대부분이 repetitive sequence에 해당하는 LTR retrotransposons 임을 감안하면 유전체 서열 어셈블리만 보더라도 많은 노력이 수반됐음을 알 수 있습니다. 실제, 오픈 소스 프로그램(SOAPdenovo, SSPACE, FLAKE)과 상용 프로그램(CLC Assmebly Cell; CLCbio사, 서울대, (주)인실리코젠의 공식 MOU를 통한 지원)이 모두 이용되었으며, 시퀀싱 또한 다양한 플랫폼/디자인으로 여러번의 수정과 시도를 반복하며 현재의 결과를 얻어냈습니다. 뿐만 아니라 유전자 구조 분석 또한 세계적인 수준의 분석이 진행되었으며 genome expansion, gene expression, 진화적론적인 phylogenetic 분석 모두 국내 연구진들의 몰입적인 연구를 수행한 결과라 할수 있습니다.
다시한번, 생물정보 컨설팅을 전문으로 하는 (주)인실리코젠의 입장으로 NGS라는 막강한 도구와 나날이 정신없이 발전하고 있는 생물정보학의 발전을 통해 보다 많은 좋은 소식이 있기를 기대해 봅니다.



Codes사업본부 Research실
선임컨설턴트 신윤희 선임


Posted by 人Co

2014/01/28 22:07 2014/01/28 22:07

HGMD professional

Next generation sequencing의 발달로 인한 personal genomics가 가능해지면서 더욱 관심을 보이고 있는 데이터베이스가 있다. Biobase HGMD 데 이터베이스가 바로 그것으로 Human의 유전적 돌연변이에 의한 질병정보를 약 100,000만개 정도 담고 있다.

사용자 삽입 이미지

Figure 1. Biobase HGMD. Human의 유전적 변이에 의한 질병 정보 데이터베이스

HGMD는 현재 유전체 서열상의 변이로 인한 질병의 병변 및 유전자의 이름 그리고 유전체상의 위치 정보를 문헌정보에 근거하여 서비스하고 있다. 이러한 정보는 OMIM, Entrez Gene 그리고 Human Gene Nomenclature Committee를 포함한 대표 web-base 데이터들과 링크를 통해 변이에 의한 표현형, 구조적 정보들이 함께 제공되고 있다. 그 자세한 내용은 아래와 같다.


Feature


  • Up-to-date Mutation Data

  • Full Coverage of PubMed journals
  • Gene Centric Search
  • Mutation Centric Search
  • Reference Centric Search
  • Boolean Full Text Searching
  • View Mutation Data by Type
  • View Mutation Data by Disease/Phenotype
  • cDNA Sequences
  • Extended cDNA Sequences
  • Expanded Gene-specific Information
  • Expanded Mutation-specific Information
  • Advanced Search Tools
  • Mutation Viewer/Maps
  • Genomic Coordinates for Missense/Nonsense Mutations
  • Search for Functional Polymorphisms
  • HGVS Nomenclature for Missense/Nonsense Mutations
  • Links to Entrez dbSNP (using rs numbers)
  • Provision of Additional Literature References
  • Search/Display of Gene Ontology Terms
  • Downloadable Version

 HGMD Professional은 위와 같이 변이 정보에 대한 서열 정보, SNP정보, HGVS nomenclature 정보를 링크를 통해 서비스하고 있으며 이들의 조절 메카니즘과 관련된 transcription factor 정보도 함께 지원하고 있다. 더욱이 이러한 모든 정보의 근간이 되는 문헌정보를 함께 제공하고 있어 그 신뢰성이 매우 높다 하겠다.


HGMD tutorial


Expanded Search Engine : 최신의 데이터를 사용자 편의에 의한 주제 중심의 인터페이스로 제공하고 있다. 키워드 방식을 이용한 특정 유전자, 질병의 상태, 변이정보, 문헌정보를 통한 검색이 가능하며 알파벳 인덱싱을 통한 검색도 가능하다.


 

사용자 삽입 이미지

 Figure 2. HGMD advance search. 유전자명, 질병, 변이정보 등을 이용한 keyword 검색이 가능하다. 또한 특정 chromosome내에 존재하는 변이정보를 한 번에 검색 할 수도 있다.


또한 특정 chromosome 내에 존재 하는 모든 변이정보를 한 번에 확인 할 수 도 있으며 이들 정보는 모두 다운 로드 기능을 통해 local PC에 저장이 가능하여 필요할 때 언제든지 활용이 가능 하다(Figure 2).


키워드 검색을 통한 유전자 검색의 경우 Figure 3에서 보여 지는 것과 같이 관련 유전자에서 동반 되는 모든 변이 정보를 확인할 수 있다. Splicing에 의한 변이정보, small deletion, small insertion 그리고 SNP에 의한 정보도 함께 검색 할 수 있다. 또한 transcription factor 정보도 링크되어 다양한 원인에 의해 유발되는 유전적 질환의 생화학적 정보를 통합적으로 확인 할 수 있다.


사용자 삽입 이미지

Figure 3. 유전자 검색. 유전자 검색을 통한 다양한 변이 정보 및 질병의 병변, 유전체상의 위치정보, 유전자 발현 조절 정보를 확인 할 수 있다.


Biochemical information : Human의 변이 정보는 구분된 카테고리 정보에서 keyword로 검색이 가능하며 이들의 정보는 이후 모두 다운로드가 가능하다. 질병의 phenotype을 비롯한 유전체 상의 위치 정보, dbSNP와 같은 기존 참조 데이터베이스의 정보, motif, regulation, 참조 문헌 정보까지 한 번에 확인할 수 있다.


사용자 삽입 이미지

Figure 4. 변이 정보 검색 결과. 유전적 변이에 의한 DNA서열의 변화, 단백질 서열 변이, 참조 데이터베이스, phenotype, gene ontology, 참조 문헌 정보를 모두 다운 받을 수 있다.


Personal genomics 시대에 가장 필수적인 데이터베이스중 하나인 Biobase HGMD는 개인의 잠재적인 유전적 질환의 탐색부터 현재 발병중인 질환에 대한 치료 연구를 위해 많은 기초 데이터를 제공할 것으로 여겨진다. 많은 논문과 데이터베이스를 집대성하여 유전적 질환의 통합적 정보를 제공하고 있는 HGMD는 앞으로 더 많은 연구자들에게 도움이 될 것이다.






Posted by 人Co

2010/05/13 19:17 2010/05/13 19:17

NGS 분석전략 세미나 개최 후기

 지난 2월 5일, 저희 (주)인실리코젠의 Codes팀은 "Practical bioinformatics pipeline for NGS data"라는 주제로 세미나를 개최하였습니다.

사용자 삽입 이미지
이번 교육은 당사에서 발간한 Quipu Issue Paper 2호의 "NGS 시대의 분석전략 2"을 중심으로 최근 가장 이슈가 되고 있는 NGS 데이터의 assembly, 그리고 그 이후에 진행할 수 있는 다양한 분석들에 대한 내용들을 크게 3가지 세션으로 나누어 구성하였습니다. 또한 생물정보 분야의 중심 역할을 하고 있는 한국생명공학연구원 국가생물자원정보관리센터(KOBIC)의 많은 연구원분들을 대상으로 진행되었습니다.

사용자 삽입 이미지
NGS 데이터의 assembly는 유전체 분석에 있어서 데이터 플랫폼의 종류와 어떤 어셈블러를 사용하느냐에 따른 분석 전략 및 파이프라인은 꼭 필요할 것이라 생각합니다. 이에 첫 번째 세션De novo assemblyReference assembly에 사용되고 있는 여러 가지 어셈블러들의 종류, 장단점 비교, 실제 데이터 벤치마킹 결과 등에 대한 내용으로 준비하였고, 발표 중간중간 관련 사항에 대한 질문과 열띤 토론으로 참석하신 연구원분들의 많은 관심을 받았습니다.

사용자 삽입 이미지
두번째 세션 SNP 분석 방법 및 최근 capture array 분석의 실제 연구사례, 관련 솔루션 등을 소개한 variation 분석 파트와 EST 데이터를 이용한 functional annotation, Organism-specific 분석, Ortholog/Paralog 유전자 분석방법 등에 대한 expression 분석 파트로 구분되어 진행되었으며 마지막 세션은 NGS와 생물정보 파이프라인을 이용한 Genome annotation에 대한 내용으로 현재 NGS 염기서열 결정 이후 문제점 및 이슈를 분석하고 효율적인 전략들을 소개하였습니다. 또한 structural annotation과 functional annotation의 분석 방법 및 실제 Codes팀의 분석 컨설팅 파이프라인 관련하여도 설명 드릴 수 있는 좋은시간이 되었습니다.

사용자 삽입 이미지
이렇게 바쁜 와중에도 하루의 일정을 직접 방문하여 소화해주신 KOBIC 연구원분들께 감사의 인사를 드리며, 진행된 교육으로 인해서 NGS 데이터를 분석하고 연구하시는데 조금이나마 도움이 되었으면 하는 바램입니다. 또한 "NGS시대의 분석전략 3"의 발간도 부탁하실 정도로 기술소식지와 세미나에 큰 관심을 보여주셔서 더욱 뜻 깊은 시간이었고, 앞으로도 이러한 교육의 자리를 많이 준비하도록 노력하겠습니다.

사용자 삽입 이미지
책자로 발간되었지만, 이번 세미나 내용을 포함한 NGS시대의 분석전략은 더욱 많은 연구자분들께 유익한 정보를 제공해 드리고자 블로그 연재도 계속 진행중입니다. 이와 관련한 자세한 문의사항은 저희 (주)인실리코젠의 Codes팀에게 연락 부탁드립니다.

(Tel: 031-278-0061, E-mail: codes@insilicogen.com)



Posted by 人Co

2010/02/25 17:37 2010/02/25 17:37
, , , , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/48

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis


이번 연재에서는 Next Generation Sequencing의 첫 번째 Application인 Variation study 중에  다양하게 구축되어 운영되고 있는 SNP 및 variation 데이터베이스에 대해 알아보도록 하겠습니다.


2-1-4. Variation Database


 다양하게 얻어진 각종 variation 데이터들은 기존에 구축되어진 데이터베이스와 비교하거나 이미 알려진 유전자 구조 정보를 활용함으로써 조금 더 유용한 정보를 얻을 수 있다. 따라서 대량의 유전변이형 정보를 체계적으로 수집하고 일반 연구자에게 전달하기 위해서는 다양한 variation 데이터베이스를 구축하여 언제든 활용할 수 있는 시스템으로 서비스 되어져야 한다. 현재 다수의 연구기관 및 연구그룹에서 SNP 및 여러 variation 관련 데이터베이스가 만들어져 운영되고 있다(표 3).

사용자 삽입 이미지
dbSNP는 미국 NCBI에서 관리하는 세계 최대의 SNP 데이터베이스로 rs#를 부여받은 human의 SNP만해도 7,344,853개(build130, 2009년 12월)가 수록되어 있다. 따라서 이렇게 축적된 대량의 SNP 데이터가 연구자들에게 제공됨에 따라 새롭게 특정 후보 유전자의 SNP를 다시 발굴할 필요 없이 대부분의 SNP 정보를 데이터베이스를 통하여 쉽게 이용할 수 있다(그림 6).

사용자 삽입 이미지
또한 좀 더 나아가 HGMD는 문헌에 보고된 모든 생식세포내의 질병을 유발하는 돌연변이들과 질병관련/기능성 다형성들을 기록하고 있다. 사실상 이는 학계에서 이용 가능한 중추적인 질병관련 돌연변이 데이터베이스로써, 암호화 시의 단일 염기쌍 치환(예, 미스센스 돌연변이와 넌센스 돌연변이), 인간 핵 유전자의 조절 및 접합관련 부위, 미세결실과 미세삽입, 결실과 삽입(indels), 반복 확장, 그리고 심한 유전자 손상(결실, 삽입 그리고 복제) 및 복합적 유전자 재배열에 관한 자료들을 제공하고 있다. 학술적으로 또는 비영리적인 목적으로 사용자 등록 후 무료로 이용 가능하다. 단, 이 돌연변이의 정보들은 데이터베이스에 최초로 추가된 후 2년 6개월 후에 공용 웹사이트에서 제공되기 때문에 최신 버전을 이용하려면 BIOBASE GmbH사로부터 인증을 받아 상업적 및 학술적 이용자에게 제공된다. 최신 돌연변이 자료 이외에도, HGMD Professional은 공용 사이트에서 제공하지 않는 첨단 검색 도구와 유전자 및 돌연변이에 대한 특별한 정보를 부가적으로 제공하고 있다(그림 7). HGMD Professional은 3개월 단위로 업데이트된다.

그 외 variation 정보를 위한 데이터베이스는 앞서 소개한 몇몇 큰 데이터베이스와 수백 가지의 유전자 각각에 대한 특화된 데이터베이스로 다원화 하여 존재하고 있다. 이들 정보의 통합 필요성이 인식 되면서 2006년 6월부터 전 인류의 유전자 변이에 대한 정보를 모으고 이를 카달로그화 하여 제공하고자 하는 국제적인 Human Variome Project(HVP, http://www.humanvariomeproject.org)가 출범되었고, 이를 통해 variome 연구는 개인의 유전적 차이 및 질병과의 관련성이 더 정확하게 밝혀져 질병에 대한 개인 간 차이 발생에 대해 더 세밀하고 진보한 해답을 얻을 수 있을 것으로 전망하고 있다.



참고문헌

 1. 이종극 (2006) 질병유전체분석법(Genetic Variation and Diseases)
 2. Eck SH, Benet-Pagès A, Flisikowski K, Meitinger T, Fries R, Strom TM. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10(8), R82.
 3. Ganal MW, Altmann T, Röder MS. (2009) SNP identification in crop plants. Curr Opin Plant Biol. 2, 211-217
 4. Xie C, Tammi MT. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 10, 80
 5. Illumina : SNP Genotyping and CNV Analysis
  (http://www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf)
 6. Bentley DR. et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008 456, 53-59
 7. Ng SB. et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272-276
 8. Koboldt DC, Miller RD, Kwok PY. (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat. 3, 249-254.
 9. 박종화 (2009) 변이체학을 위한 생정보학 분석도구. Medical POSTGRADUATES. 3(37), 131-133
 10. 유향숙, 김선영 (2009) Variome 국제연구동향. Medical POSTGRADUATES. 3(37), 134-137
 11. 임선희, 정연준. (2009) 새로운 유전체 변이의 등장 : 유전자 복제수 변이. Medical POSTGRADUATES. 3(37), 149-153

Posted by 人Co

2010/02/21 19:19 2010/02/21 19:19
, , , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/44

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 연재에서는 Next Generation Sequencing의 첫 번째 Application인 Variation study 중에  Targeted Sequencing (Sequence Capture) 기술에 대해 알아보도록 하겠습니다.

2-1-3. Targeted Sequencing (Sequence Capture)


 최근 염기서열 분석은 전체 유전체의 염기서열 분석에만 치중하지 않고, 관심이 있는 특정 유전체의 일부분을 분석하고자 하는 경향이 대두되고 있다. 또한 NGS가 출현하면서 염기서열 분석의 작업량이 증가하자 PCR을 이용한 타겟 시퀀싱에서 병목현상을 일으키기 시작하였다. 이러한 문제를 해결하기 위해 ‘Sequence Capture’라는 기술이 개발되었고 Roche NimbleGen에서 처음 상용화 되어 관심 있는 특정 유전체의 일부분을 선택적으로 분석을 할 수 있어 NGS를 이용한 유전체 분석에서 중요한 부분을 차지하게 이르렀다.

Sequence Capture 기술은 타겟으로 하는 유전체의 각 부위와 상보적으로 결합하도록 디자인된 프로브가 올려져있는 DNA chip과 분석하고자 하는 샘플의 유전체 서열간의 hybridization을 진행하여 특이적으로 결합한 DNA 절편들을 분리 후 NGS를 이용하여 직접적으로 시퀀싱을 진행하는 방식이다(그림 5).

사용자 삽입 이미지
그림 5. Sequence Capture 원리.
Genome 서열을 무작위 적으로 절단하여 엑손 영역만이 프로브로 심겨진 DNA chip에 hybridization한다. 이 후 DNA chip의 프로브 서열과 결합된 유전체의 엑손 서열을 chip에서 분리하여 NGS 방식의 시퀀싱으로 서열을 결정한다.

NGS로 염기서열을 분석하기 때문에 타겟 서열의 coverage가 굉장히 많이 향상되어 원하는 부분의 정확한 서열 정보를 얻을 수 있다. 이러한 Sequence Capture 방법을 이용하여 워싱턴주립대학과 Agilent사의 연구팀이 공동으로 Target Capture Array로부터 Illumina GA를 사용하여 8명의 HapMap Individual과 4명의 희귀질환인 Freeman-Sheldon syndrome (FSS)을 가진 환자의 엑손 영역만을 시퀀싱하여 protein coding variation을 찾은 연구를 수행하였다[8].

그 결과 Freeman-Sheldon syndrome(FSS)의 원인 유전자로 알려진 MYHS 유전자만이 정상인과 환자 사이에서 차이를 보인다는 것을 확인하였다[7]. Human의 전체 유전체는 30억 염기쌍이지만 그 중 유전자 영역인 엑손은 전체 염기의 약 1%에 해당하는 3천만 염기쌍 정도 이다. NGS 기술로 인해 유전체 시퀀싱이 쉽고 빠르게 되었다고는 하지만, 아직 높은 비용이기 때문에 이러한 엑손 시퀀싱으로 유전체 전체를 대상으로 보고자 하는 영역만을 보다 빠르고 저렴하게 분석할 수 있다는 것이 매우 고무적이라 하겠다.

다음 연재에서는 variation의 마지막 다양하게 구축되어 운영되고 있는 SNP 및 variation 데이터베이스에 대해 알아보도록 하겠습니다.
많은 관심 부탁드립니다.

참고문헌

 1. 이종극 (2006) 질병유전체분석법(Genetic Variation and Diseases)
 2. Eck SH, Benet-Pagès A, Flisikowski K, Meitinger T, Fries R, Strom TM. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10(8), R82.
 3. Ganal MW, Altmann T, Röder MS. (2009) SNP identification in crop plants. Curr Opin Plant Biol. 2, 211-217
 4. Xie C, Tammi MT. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 10, 80
 5. Illumina : SNP Genotyping and CNV Analysis
  (http://www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf)
 6. Bentley DR. et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008 456, 53-59
 7. Ng SB. et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272-276
 8. Koboldt DC, Miller RD, Kwok PY. (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat. 3, 249-254.
 9. 박종화 (2009) 변이체학을 위한 생정보학 분석도구. Medical POSTGRADUATES. 3(37), 131-133
 10. 유향숙, 김선영 (2009) Variome 국제연구동향. Medical POSTGRADUATES. 3(37), 134-137
 11. 임선희, 정연준. (2009) 새로운 유전체 변이의 등장 : 유전자 복제수 변이. Medical POSTGRADUATES. 3(37), 149-153












Posted by 人Co

2010/02/19 10:13 2010/02/19 10:13
, , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/43

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis


이번 연재에서는 Next Generation Sequencing의 첫 번째 Application인 Variation study 중에 CNV (Copy Number Variation) 분석법에 대해 알아보도록 하겠습니다.

 2-1-2. CNV (Copy Number Variation) Analysis                                    


 SNP가 유전적 다형성의 대명사로 여겨졌지만 이외에도 정상 표현형인 인간의 유전체에 유전자 복제 수(copy number) 변이가 존재하여 유전적 다양성에 기여하고, 암 또는 많은 질병 감수성과도 연관될 가능성이 높다는 연구 결과가 보고되면서 유전체의 구조적 변이에 대한 관심이 대두되었다. CNV(Copy Number Variants)는 reference 유전체와 비교해서 copy number의 차이를 보이는 1kb 이상의 DNA 조각으로 정의하며, 평균 크기는 29kb에서 523kb 정도로 예상된다고 한다.

현재 전체 유전체에서 CNV를 발굴하는 방식 중 가장 흔히 사용되는 방식은 CGH (comparative genomic hybridization)의 원리에 DNA 칩의 기술을 접목시킨 array-CGH이다. 마이크로어레이 기반 CGH 실험 분석 목적은 모든 유전체 안에서 각각의 유전자 조각들이 반복 횟수 변화를 보이는 부분을 선별해 내거나 반복 횟수의 양적 변화를 찾는 것이다. 이렇게 마이크로어레이 플랫폼을 이용해 발굴된 CNV는 분석에 이용된 플랫폼 의존 특성을 가지게 되어 최종 데이터의 질적인 측면과 연관되어 분석 결과의 치우침 문제를 유발할 수 있다. 또한 hybridization 효율이 프로브 마다 다양하고, 실제 copy number의 프로브 서열이 아닐 가능성도 고려해야 하는 한계에 봉착하였다. 이에 이를 극복할 만한 대안이 필요한 상황에서 NGS 기술의 보급은 CNV 발굴의 차세대 플랫폼으로 등장하였다. 앞서 언급된 NGS 기술을 통한 SNP 분석과 마찬가지로 유전체 서열과 다양한 fragment size의 paired-end reads를 assembly 함으로써 시퀀싱 coverage를 이용한 잠재적인 CNV를 분석할 수 있다(그림 4).

사용자 삽입 이미지
그림 4. aCGH와 CNV-seq 방법의 분석 과정 비교


그러나 SNP와 같이 하나의 염기서열 차이로 변이를 확인하는 것이 아니기 때문에 assembly 분석 시 시퀀싱 오류로 인하여 다른 부분에 정렬되어 잘못된 variation을 검출하게 되는 가능성도 배제할 수는 없다. 따라서 최근 Robust 통계 모델을 기본으로 하면서 aCGH와 NGS 기술의 이점들만 조합하여 효율적인 CNV 분석에 대한 논문이 발표되었고 이러한 방법을 이용하여 두 개체(Dr. J. Craig Venter와 Dr. James Watson) 사이의 CNV를 분석한 평가 결과도 함께 확인할 수 있어 이 후 aCGH와 NGS 기술을 접목한 CNV 분석 방법이 충분히 발전할 것으로 생각된다[4]. 이렇게 진행한 연구 방법과 결과들은 웹사이트를 통하여 무료로 이용할 수 있다(http://tiger.dbs.nus.edu.sg/CNV-seq).

다음 연재에서는 전체 유전체의  염기서열 분석이 아닌 관심있는 특정 유전체의 일부분을 분석하는 방법인 Sequence Capture 기술에 대해 알아보도록 하겠습니다.
많은 관심 부탁드립니다.




참고문헌

 1. 이종극 (2006) 질병유전체분석법(Genetic Variation and Diseases)
 2. Eck SH, Benet-Pagès A, Flisikowski K, Meitinger T, Fries R, Strom TM. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10(8), R82.
 3. Ganal MW, Altmann T, Röder MS. (2009) SNP identification in crop plants. Curr Opin Plant Biol. 2, 211-217
 4. Xie C, Tammi MT. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 10, 80
 5. Illumina : SNP Genotyping and CNV Analysis
  (http://www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf)
 6. Bentley DR. et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008 456, 53-59
 7. Ng SB. et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272-276
 8. Koboldt DC, Miller RD, Kwok PY. (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat. 3, 249-254.
 9. 박종화 (2009) 변이체학을 위한 생정보학 분석도구. Medical POSTGRADUATES. 3(37), 131-133
 10. 유향숙, 김선영 (2009) Variome 국제연구동향. Medical POSTGRADUATES. 3(37), 134-137
 11. 임선희, 정연준. (2009) 새로운 유전체 변이의 등장 : 유전자 복제수 변이. Medical POSTGRADUATES. 3(37), 149-153

Posted by 人Co

2010/02/18 09:17 2010/02/18 09:17
, , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/42

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 연재에서는 Next Generation Sequencing의 첫 번째 Application인 Variation study 중에 SNP(Single Nucleotide Polymorphism) 분석법에 대해 알아보도록 하겠습니다.

 2-1-1. SNP (Single Nucleotide Polymorphism) Analysis


 인간 유전체 상에 가장 많이 존재하는 형태의 다형성은 유전체상의 특정 염기서열 하나의 변화이며, 흔히 SNP(Single Nucleotide Polymorphism) 또는 단일염기다형성이라고 부른다. 한 논문에서는 SNP를 검출하는 방법을 다섯 가지로 요약해 나타냈다(표 2)[3]. 이러한 방법들의 공통된 특징은 유전자 또는 염색체 부위를 증폭한 산물에 대한 염기서열을 분석하고 여러 염기서열을 정렬하여 염기서열 차이로서 SNP 존재 여부를 확인하는 것이다. 이러한 관점으로 볼 때 정렬되는 서열이 많을수록 통계적으로도 안정적이며 명확한 variation을 분석할 수 있게 된다. 따라서 제한된 시간 동안 가장 많은 서열을 생산할 수 있는 NGS는 이에 가장 부합하는 분석 도구가 될 것이다.

사용자 삽입 이미지

또한 HapMap project에서 발표한 human 유전체의 SNP 분포를 확인해 보면 공개된 SNP의 약 34.1%에 해당하는 SNP가 30bp 안에 군집하여 분포한다는 것이다(그림 2)[8]. 이는 종전의 마이크로어레이 방식에서 NGS 방식의 SNP 탐색으로의 전환이 매우 필수적임을 시사한다. 그 이유는 마이크로어레이에 심어질 프로브 서열 내에 또 다른 SNP가 포함될 가능성이 매우 높으며 이러한 SNP는 고정되어 있는 프로브 서열로 인해 탐색이 되지 않는 치명적인 제한점을 NGS 방식의 시퀀싱을 통해 매우 효율적으로 해결할 수 있기 때문이다.

사용자 삽입 이미지
그림 2. Human Genome의 SNP 분포.
30bp 내에 많은 SNP이 군집을 이루며 모여 있다.

 Variation 분석에 적합하도록 시퀀싱이 수행되고 나면 실제 많은 reads를 이용한assembly가 수행되고 그 결과를 바탕으로 서열을 비교하여 variation 부분을 탐색하게 된다. 그 중 SNP 분석의 경우, 시퀀싱 중에 일어난 오류에 기인한 mis-match인지 variation으로 인한 mismatch 인지를 구별하기 위한 여러 가지 파라미터를 설정하게 된다. Mismatch frequency 및 coverage(해당 위치의 서열 coverage)를 중심으로 잠재적인 SNP를 선별하게 된다. 이때, 조금 더 정확한 SNP를 구별하기 위해 viewer를 통해 서열 퀄리티를 확인하는 경우도 발생하게 되는데, 다양한 플랫폼에서 생성된 reads들은 고유의 포맷을 유지하고 있고 대부분의 open source로 제공되는 프로그램들은 특정 플랫폼의 데이터만을 다루도록 하고 있어 이를 확인하기에는 어려움이 따른다. 또한 특정 SNP가 cSNP 인지 여부나 더 나아가 단백질 서열까지 변화되는 synonymous SNP 인지 여부를 판단하기에는 생물정보학자의 도움이 절실히 요구된다. 그러나 이러한 과정 모두를 해결해 줄 수 있는 프로그램들이 계속해서 개발되어지고 있다. 그 중 CLC NGS Cell과 CLC Genomics Workbench는 NGS 데이터의 assembly와 사용자 편의의 인터페이스를 통해 분석된 SNP의 아미노산 서열 변화 확인을 위한 translation 분석, SNP 검증을 위한 PCR 프라이머 디자인, in-silico 클로닝 등의 통합 분석을 생물정보 전문가가 아닌 일반 연구자들 스스로 진행할 수 있도록 하고 있다. 뿐만 아니라 assembly를 수행할 때 reference 서열을 이미 annotation이 완료된 ‘.gbk’ 데이터로 진행할 수 있어, SNP로 생각되는 유전자의 위치 및 이미 등록된 SNP 정보들까지도 표시하여 함께 확인할 수 있기 때문에 NGS 기술을 이용한 SNP 분석에 추천할 만한 분석 파이프라인이라고 하겠다(그림 3).

사용자 삽입 이미지
그림 3. SNP 탐색을 위한 CLC Genomics Workbench



다음 연재에서는 SNP(Single Nucleotide Polymorphism) 이외에 정상 표현형인 인간의 유전체에 존재하면서 유전적 다양성에 기여하고, 암 또는 많은 질병 감수성과도 연관될 가능성이 높은 유전자 복제수(Copy number) 변이 분석법에 대해 알아보도록 하겠습니다. 많은 관심 부탁드립니다.


참고문헌

 1. 이종극 (2006) 질병유전체분석법(Genetic Variation and Diseases)
 2. Eck SH, Benet-Pagès A, Flisikowski K, Meitinger T, Fries R, Strom TM. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10(8), R82.
 3. Ganal MW, Altmann T, Röder MS. (2009) SNP identification in crop plants. Curr Opin Plant Biol. 2, 211-217
 4. Xie C, Tammi MT. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 10, 80
 5. Illumina : SNP Genotyping and CNV Analysis
  (http://www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf)
 6. Bentley DR. et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008 456, 53-59
 7. Ng SB. et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272-276
 8. Koboldt DC, Miller RD, Kwok PY. (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat. 3, 249-254.
 9. 박종화 (2009) 변이체학을 위한 생정보학 분석도구. Medical POSTGRADUATES. 3(37), 131-133
 10. 유향숙, 김선영 (2009) Variome 국제연구동향. Medical POSTGRADUATES. 3(37), 134-137
 11. 임선희, 정연준. (2009) 새로운 유전체 변이의 등장 : 유전자 복제수 변이. Medical POSTGRADUATES. 3(37), 149-153

Posted by 人Co

2010/02/17 14:37 2010/02/17 14:37

[Quipu Issue Paper] Variation study Ⅰ

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 주 Quipu Issue Paper 기술 소식지에서는 Next Generation Sequencing의 첫 번째 Application인 Variation study에 대해 5번에 걸쳐 연재될 예정입니다.  다양한 variation study에 대한 소개에 앞서 오늘은 NGS reads를 이용한 assembly에 기반을 둔 variation 분석은 어떻게 이루어지는지 알아보도록 하겠습니다.  

2. Application of Next Generation Sequencing


 2-1. Variation Study


 Next Generation Sequencing 기술은 이제 유전체 연구의 밑바탕이 되고 있다. 수백 Mega base에서 Giga base에 이르기까지 엄청난 양의 염기서열 분석을 수행해내면서 전체 염기서열 결정 및 re-sequencing을 통해 유전체 상의 여러 가지 변이 연구를 활발히 하게 하였다. 이는 시간과 가격적으로 효과적인 마커를 개발할 수 있을 뿐만 아니라 개인 맞춤 의학에 빠르게 다가갈 수 있도록 하고 있다. NGS를 이용한 variation 연구는 대부분 양쪽 말단 서열을 동시에 해독하는 방법인 paired-end 시퀀싱을 사용하고, 평균 시퀀스 배수를 유전체의 20~40X로 시퀀싱을 진행하여 reference 서열에 정확한 맵핑과 정렬을 통해 비교하는 것이 보통이다. 이 후 분석된 막대한 양의 정보들 가운데 의미 있는 SNP나 CNV 분석을 위한 이차적 분석에 전문적 수준의 생물정보학적 도구가 필수적으로 이용되고 있다.

 NGS reads를 이용한 variation 분석은 기본적으로 assembly에 기반을 둔다. 특정 원하는 영역의 서열만을 골라 시퀀싱 하는 amplicon 시퀀싱 방법과 유전체 서열 전체를 대상으로 시퀀싱하는 두 가지 방법 모두 일차적으로 assembly를 수행하고 이후 서열간의 비교 분석을 통해 variation 분석을 진행한다. 따라서 대부분의 assembler는 assembly 뿐만 아니라 이후 SNP와 같은 variation 분석이 가능하도록 추가 기능을 제공하고 있다. 그러나 서열 하나 정도의 variation이 아닌 넓은 범위에 걸쳐 발생하는 variation은 single reads 혹은 짧은 fragment의 paired-end 시퀀싱으로는 한계가 있다. 이를 극복하기 위해 분석 목적에 따라
시퀀싱 타입을 다양하게 디자인하고 있다.

사용자 삽입 이미지
그림 1. NGS reads를 alignment를 이용한 genome 서열 내의 variation 탐색.
다양한 fragment size 설정으로 SNP, CNV 및 구조적 variation 탐색이 가능하다.

 일반적으로, variation 분석에는 fragment size를 다양하게 구성한 paired end 시퀀싱을 추천한다. SNP 뿐만 아니라 CNV와 같은 넓은 지역에서의 variation과 구조적 변화까지 분석하기에는 길이에 제한이 있는 single reads 보다는 다양한 길이로 구성된 paired reads를 이용하여 기준이 되는 reference 서열에 모두 alignment가 수행될 수 있도록 하는 것이 효율적이기 때문이다. 그림 1에서 보여 지는 것과 같이 reference 서열과 비교했을 때 1.5kb의 insertion이 존재하는 경우 500bp fragment의 paired-end 서열은 한쪽만 alignment 되고 다른 한쪽은 alignment가 수행되지 않을 것이다. 그러나 2kb fragment paired-end 서열의 경우  양쪽 서열이 모두 reference 서열에 alignment 되면서 1.5kb의 insertion이 일어났음을 인지할 수 있게 된다. 또한 양쪽 서열의 alignment 방향을 체크하여 inversion이 일어났는지도 확인이 가능하다[7]. 표 1에서는 분석 목적에 따른 최적화된 NGS reads 타입을 소개하고 있다[5]. 현재 paired-end의 fragment size는 200bp에서 5kb 까지 가능한 수준이다. 그 중 2-5 kb의 long fragments의 시퀀싱은 fragment 양 끝 말단을 ligation 하여 circular 형태로 만들고 이후 다시 circular 형태의 서열을 400-600bp 길이로 절편을 만들어 그중 양쪽 끝 말단의 서열을 포함하고 있는 fragment만을 선별하여 시퀀싱을 수행한다[5]. 이러한 방법은 긴 서열 중 필요한 양쪽 끝 말단만을 추출하여 시퀀싱의 샘플로 이용하는 것으로 ‘mate paired ends’라 하며, 시퀀싱의 품질을 높이는 하나의 방법이 된다.

사용자 삽입 이미지
결론적으로, ‘1-2. Assembly’ 에서도 언급 하였듯이 variation을 목적으로 분석하는 경우에는 분석하려는 서열들 간의 차이를 인지하고 이를 반영한 assembly가 수행되어야 한다. 따라서 reference assembly 수행에서도 reference 서열과 시퀀싱 된 reads간의 차이는 SNP와 같은 서열하나일 수도 있고 CNV나 구조적 변형 같은 넓은 범위의 variation도 있기 때문에 표 1에서 언급한데로 다양한 길이의 fragment size로 분석하는 것이 언급된 모든 variation을 분석하기에는 가장 적합하다[5].

다음 연재에서는 다양한 variation study 중에 SNP(Single Nucleotide Polymorphism) 분석법에 대해 알아보도록 하겠습니다.

많은 관심 부탁드립니다.

참고문헌

 1. 이종극 (2006) 질병유전체분석법(Genetic Variation and Diseases)
 2. Eck SH, Benet-Pagès A, Flisikowski K, Meitinger T, Fries R, Strom TM. (2009) Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10(8), R82.
 3. Ganal MW, Altmann T, Röder MS. (2009) SNP identification in crop plants. Curr Opin Plant Biol. 2, 211-217
 4. Xie C, Tammi MT. (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 10, 80
 5. Illumina : SNP Genotyping and CNV Analysis
  (http://www.illumina.com/documents/products/datasheets/datasheet_genomic_sequence.pdf)
 6. Bentley DR. et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008 456, 53-59
 7. Ng SB. et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272-276
 8. Koboldt DC, Miller RD, Kwok PY. (2006) Distribution of human SNPs and its effect on high-throughput genotyping. Hum Mutat. 3, 249-254.
 9. 박종화 (2009) 변이체학을 위한 생정보학 분석도구. Medical POSTGRADUATES. 3(37), 131-133
 10. 유향숙, 김선영 (2009) Variome 국제연구동향. Medical POSTGRADUATES. 3(37), 134-137
 11. 임선희, 정연준. (2009) 새로운 유전체 변이의 등장 : 유전자 복제수 변이. Medical POSTGRADUATES. 3(37), 149-153














Posted by 人Co

2010/02/16 14:19 2010/02/16 14:19
, , , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/40