BKL PROTEOME

  진핵생물의 세포내 조절 메카니즘은 전사 수준의 유전자 발현 조절과 이후 생성된 단백질 간의 조절 메카니즘으로 구분지어 볼 수 있다. 이들은 세포 밖 외부 신호로부터 target 유전자까지의 신호전달을 유기적으로 전달하며 다양한 루트를 통해 전달한다. 따라서 하나의 단백질과 유전자가 한 가지 기능만을 수행하기 보다는 다양한 단백질과 유전자들과의 상호 협력적인 관계를 통해 전체적인 세포내 항상성을 유지하게 된다.

Biobase는 이러한 총체적인 세포내 조절 메카니즘 분석을 위해 BKL TRANSFAC을 통해 전사수준의 세포내 조절 메카니즘 분석을 위한 resource 데이터를 제공하고, BKL PROTEOME을 통해 이후 단백질 수준의 조절 메카니즘 분석을 위한 데이터베이스를 서비스하고 있다.

2010년 현재 PROTEOME은 6개의 category로 구분된 데이터베이스로 운영되고 있다. Disease-biomarker associations 관심 있는 유전자 혹은 질병에 관련된 pathway, regulation networks, drug interaction 정보를 제공하며 단백질과 질병간의 조절관계를 모 식도를 통해 이해하기 쉽도록 다양한 정보를 제공하고 있다.

  • 자연계에서 일어나는 현상에 대한 인과 관계 및 예방을 위한 정보
  • mRNA의 과잉 발현, DNA mutation, altered protein의 activity와 관련된    질병정보
  • 해당 약물의 질병 메카니즘에 끼치게 될 영향 및 target 유전자에 가해질    잠재적인 예후 정보
  • 새롭게 찾아낸 단백질의 다양한 pathway 정보 및 관계 정보

 Drug-protein interactions 특정 약물에 의해 영향을 받는 대사회로 및 네트워크    정보를 제공하며, 이는 drug 개발을 위한 결정에 보다 직관적인 정보를 제공 한다.


  • Drugbank 로부터 7,000개의 drug-protein interaction 정보를 분석
  • Yeast에서 확인된 1,200개의 chemical regulation 정보
  • Human, yeast 그리고 worm에서 annotation된 12,000개의 drug interaction의 자세한 정보.

 Signaling, metabolic pathway, and expression regulation data 모식화 된 pathway 및 regulation networks 정보를 통해 세포내 조절 메카니즘을 총체적으로 이해 할 수 있도록 하였다.

  • 19,000 건의 signaling interactions
  • Fungal 유전자의 2,700개의 regulator정보
  • 5,100건의 pathway 정보
Yeast and worm models 관심 있는 질병, 병원체, pathway 연구를 위한 model organism으로 다양한 관련 정보를 제공한다.

  • S.cerevisiae, S.pombe - 질병, 노화, fungal pathogen, 바이오연료       그리고 그 외 기초 연구를 위한 모델 정보
  • C.elegans - 질병, 노화, miRNA technology, nematode pathogen         그리고 그 외 기초 연구를 위한 모델 정보
 Fungal pathogens 관심 18개의 human pathogen과 관련된 infection disease 정보 및 pathogen drug 개발을 위한 기초자료를 제공 한다.

  • C. albicans and other Candida species
  • Aspergillus species
  • Blastomyces species
  • Coccidioides immitis
  • Cryptoccocus neoformans
  • Histoplasma capsulatum
  • Pneumocystis species

 Plant Science public data와 전문가의 manual curation 데이터의 조합을 통한 식물 유전체 내의 pathway 정보와 resource data를 제공한다.


  • Arabidopsis, soybean, maize, sorghum, and rice
  • 다른 데이터베이스에서는 찾아 볼 수 없는 표현형과 발현치에 대한 정보
  • Cell signaling and metabolic pathway data
  • BAR을 통한 발현데이터 visualization
  • Sequence 정보를 이용한 규명되지 않은 단백질의 GO, domain정보

PROTEOME Tutorial


 Quick search BKL PROTEOM은 Gene/protein, disease, pathway, drug 그리고 keyword category를 통해 검색 할 수 있다. 원하는 유전자가 포함된 disease 및 pathway정보를 문헌을 통한 전문가의 curation으로 세포내 기능을 검색할 수 있다.

사용자 삽입 이미지
Figure 1. BKL PROTEOM quick search. 유전자, 질병, pathway, drug, keyword를 통해 원하는 정보를 손쉽게 검색할 수 있다. 또한 organism을 제한하여 많은 데이터들 속에서   원하는 정보만을 한 번에 검색 할 수 있다.

STAT3 단백질을 검색한 결과 기본적인 단백질의 대표 기능과 함께 다양한 데이터베이스에서 활용되고 있는 STAT3의 synonyms 정보를 서비스 한다. 또한 좀 더 세분화된 카테고리로 구분된 단백질의 정보를 서비스하는데, biomarker
associations, drug interaction, gene ontology, mutant phenotype, pathway, transcriptional regulation, protein feature, annotation에 관련된 세포내 총체적인  기능을 이해 할 수 있도록 서비스 하고 있다.

Biomarker association disease와 관련된 biomarker로 활용되고 있는 단백질의 정보를 서비스한다. 이러한 정보는 질병의 진단을 위해 혹은 질병 징후에 대한 연구를 위해 활용되고 있다(Figure 2).

사용자 삽입 이미지
Figure 2. Biomarker association. 질병과 관련한 단백질의 표지인자로 활용되는 정보를 서비스한다. 각 질병과 관련된 단백질의 상세 관계 정보는 질병을 클릭하여 자세히 확인 할 수 있다.


 Pathway interaction 단백질과 관련한 pathway 및 interaction 정보를 서비스 한다(Figure 3). Multi-function하는 단백질의 특성상 다양한 pathway와 interaction정보를 검색 할 수있으며 이들의 pathway는 모식도를 통해 graphical하게 확인 할 수 있다. Pathway상의 upstream, downstream에 존재하는 단백질과 관계정보를 총체적으로 살펴 볼 수 있으며 이들 정보는 모두 text 형태로도 변환이 되어 서비스된다.

사용자 삽입 이미지
Figure 3. Pathway & Interaction. 관심 있는 단백질이 포함된 pathway와 interaction정보를   모식도를 통해 서비스하고 있다.


Pathway 모식도는 figure 4에서 보여지는 것과 같이 대표 단백질로 간편화 하여 전
체적인 세포내 기능을 이해 할 수 있는 것(figure 4. A)과 관련 단백질의 모든 관계를 표시한 PathFinder(figure 4. B)로 구분 지어 있다. PathFinder는 많은 단백질의 관계 중에 보고자하는 특정 질병 및 drug 그리고 유전자 관련 pathway만을 지정하여 tag를 이용하여 표시함으로써 이해를 돕고 있다.

사용자 삽입 이미지
Figure 4. Pathway. Graphical viewer를 통한 pathway의 주요 단백질 만들 대상으로 전체적인 정보를 보여주는 것(A)과, PathFinder(B)를 통한 모든 관련 단백질의 관계를 포함한 질병 및 drug 정보를 자세히 살펴 볼 수 있다. PathFinder에서는 zoom-in/out을 통해 단백질간의 관계를 자세히 살펴 볼 수 있으며, 원하는 단백질, 질병, drug정보를 기준으로 직접적으로 영향을 주는 pathway에 하이라이트를 통해 보다 직관적으로 이해할 수 있도록 하였다.

Regulation 특정 단백질이 조절하는 다른 단백질 정보를 서비스하는 것으로 up-regulation, down-regulation 그리고 non-effect로 구분되어 있다(figure 5). Pathway상에서 찾아 볼 수 있는 정보를 보다 유연한 형태로 서비스함으로써 사용자 편의를 고려한 서비스라 하겠다.

사용자 삽입 이미지
Figure 5. Regulation. 단백질들 간의 조절 관계를 up-/down-regulation을 통해 정리하였다.

Annotation 단백질의 pathway 정보뿐만 아니라 expression정보, GO 정보, modification 정보, localization 정보를 비롯한 단백질의 모든 기능을 서비스한다.   이들 정보는 모두 전문가의 curation을 통해 정리된 것으로 참고가 된 문헌 정보는 모두 링크를 통해 서비스 되고있다(figure 6).

사용자 삽입 이미지
Figure 6. Annotation. 단백질의 다양한 function 정보를 서비스한다. Pathway를 비롯한 expression, domain, GO, mechanism, feature정보를 문헌정보와 함께 서비스하고 있다.


2010년 4월 업데이트를 통해 새롭게 서비스 되는 BKL PROTEOM은 이전 버전과 비교하여 사용자 편의를 고려한 서비스가 매우 강화 되었다. Export 기능을 통해 원하는 정보를 모두 다운로드 받을 수 있으며, 많은 정보 가운데 원하는 정보만을 선택적으로 살펴 볼 수 있도록 카테고리화 한 점도 이에 해당한다. 그러나 무엇보다 Biobase의 최대 장점은 문헌정보를 바탕으로 한 전문가의 curation으로 데이터의 신뢰성을 높였다는 것으로 BKL PROTEOM 또한 신뢰성 높은 데이터베이스를 제공하고 있다.


Posted by 人Co

2010/05/04 16:34 2010/05/04 16:34

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 연재에서는 유전자의 기능을 분석하는 Functional annotation 중에 먼저 상동성 기반의 Annotation에  대해 알아보겠습니다.

2-4-2. Functional annotation


 A. 상동성(homology) 기반의 Annotation


 전체 서열에서 유전자의 위치와 구조 정보를 파악하여 유전자의 서열을 분석한 뒤 그 서열 정보를 통해 유전자의 기능을 유추 한다. 가장 보편적으로 유전자의 기능을 분석하는 방법이 상동성 기반의 분석이다. 다만, 상동성 분석에 기반한 유전자 기능 유추 시 사용되는 데이터베이스에 따라 노이즈 발생률이 차이가 나므로 데이터베이스 구축에 많은 노력을 기우려야 한다. 분석하려고 하는 종과 동일한 종의 단백질 서열을 1차 데이터베이스로 구축하고 다음으로 유연  관계가 가까운 종을 대상으로 2차 데이터베이스를 만드는 피라미드 형태의 데이터베이스 구축이 필요하다. 또한 각 데이터베이스에 맞는 상동성 경계 값(cutoff) 조정이 필요하다. 단백질 수준에서의 상동성은 보통 높게는 1e-200에서 낮게는 1e-4 까지 적절한 수준으로 조정을 하게 된다. 그러나 DAN 수준에서의 상동성은 아무리 높은 e-value 경계 값이라도 신뢰할만한 정보가 되지 않는다고 말한다. 따라서 e-value 뿐만 아니라 identity, HSP coverage 등이 상동성 레벨을 정하는 기준이 되기도 한다.

 석에 이용되는 데이터베이스는 그 특성에 따라 약간의 차이가 있다(표 1). 단백질의 기능 규명을 위해 단백질의 1차 구조인 서열 정보부터 2차 구조정보인 도메인 정보, 3차 구조정보에 해당하는 PDB 정보 등 다양한 데이터베이스가 이용된다. 뿐만 아니라 세포내 위치 정보를 통해 기능을 유추하기도 하므로 세포내 위치 정보까지 가능한 모든 정보를 분석할 수 있는  흡사 유전자 기능 백화점과 같은 유전자 기능에 대한 정보 분석이 요구된다. 이러한 통합적인 유전자 기능 분석을 수행하기 위해서는 다양한 알고리즘과 데이터베이스, 분석 프로그램들의 유기적인 네트워크가 구축되어야 하며, 수많은 데이터의 입출력이 이루어지므로 데이터의 효율적인 관리를 위한 시스템도 연계되어야 되므로 상당히 복잡한 대규모 분석 시스템이 요구된다. BioMax사에서는 초기 인간 유전체 기능 분석부터 수백 종의 미생물, 다양한 척추동물, 식물 등의 기능 분석을 수행한 Pedant-Pro(http://www.biomax.com/products/pedantpro.php)라는 유전체 구조, 기능 분석 자동화 시스템을 서비스하고 있다.

사용자 삽입 이미지

Pedant-Pro에서는 크게 세 가지 카테고리로 구성된 데이터베이스를 통해 단백질의 기능을 규명하고 있다. 첫 번째, 단백질의 1차 구조인 서열정보를 이용한 분석으로 GO, MetaCat, FunCat, EC, COGs 데이터베이스를 활용한다(표 2).

사용자 삽입 이미지
단백질의 기능 분석은 DAG 구조를 이용한 계층화 방법으로 다중 기능을 수행하는 단백질의 특성에 맞게 GO와 FunCat을 이용하고 있으며, 그 중 MetaCat은 metabolization 분석에 이용되며 EC는 단백질의 enzymatic function에 각각 초점을 두어 이차적인 세포내 대사회로 분석의 기초자료를 제공하고 있다. COGs는 종간의 ortholog 그룹 정보를 데이터베이스로 구축한 것으로 유사 기능을 갖는 단백질들을 그룹화하여 기능을 유추하는데 도움을 주고 있다. 두 번째로는 단백질의 이차구조정보를 이용한 분석이다. 단백질의 hydrophobicity에 기반을 둔 transmembrane helice 및 site prediction을 수행하는 HMMTOP, TMHMM 그리고 단백질의 signal peptides 및 cleavage site를 예측하는 SignalP 분석이 이에 해당된다.

사용자 삽입 이미지
그림 8. Pedant-Pro 유전자 기능 분석 결과 리포트.
Pedant-Pro의 유전자 구조, 기능 분석 리포트는 웹으로 확인할 수 있으며, 윈도우 방식의 디렉토리/폴더 구조로 각 분석 결과들이 구성되어 있으므로, 연구자가 쉽게 다양한 정보를 습득할 수 있다. 분석 결과 리포트는 다양한 공개 데이터베이스와의 연계 정보와 단백질의 도메인 정보, FunCat과 같은 기능 분류 정보등과 같은 다양한 특징적인 정보들을 볼 수 있다. 또한 단백질의 1차, 2차, 3차 구조에 대한 정보와 단백질의 Paralog 클러스터 정보 등을 확인할 수 있다.

 단백질의 서열 정보에 기반하여 얻어진 단백질 내의 도메인 정보는 프로파일 과정을 통해 서로 비슷한 도메인 프로파일을 갖는 단백질들 간의 클러스터 분석에 이용된다. 단순 서열 상동성에서 벗어나 좀 더 구체화된 기능을 중심으로 유전자의 기능을 유추하는 방법을 Pedant-Pro에서 제시하고 있다(그림 9). 유사한 방법으로 synteny 구조를 이용한 ortholog 분석이 있다.  유연관계가 가까운 종과의 synteny 분석을 이용해 유전자의 기능 뿐 아니라 염색체 내의 물리적 위치정보까지 이용하여 유전자의 기능을 규명하게 된다. 이들 방법들은 종간 ortholog 분석에 기초한 비교유전체 분야에 주로 이용되며 그 자세한 내용은 다음에서 다루도록 한다.
사용자 삽입 이미지
그림 9. 도메인 profile을 이용한 protein cluster 분석

다음 연재에서는 서로 다른 종간의 상응하는 유전자 조합 및 구성을 분석하여 진화론적인 유연관계를 밝히는 비교유전체 분석에  대해 알아보겠습니다. 많은 관심 부탁드립니다.



참고문헌

 1. Lowe, T.M. and Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964.
 2. Lewis SE, et al. (2002). Apollo: a sequence annotation editor. Genome Biology. 12, research0082
 3. Noh SJ, Lee K, Paik H, Hur CG. (2006) TISA: tissue-specific alternative splicing in human and mouse genes. DNA Res. 13, 229-243
 4. Stanke M, Schoffmann O, Morgenstern B, Waack S. (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external  
 sources. BMC Bioinformatics. 7, 62. 
 5. Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA.  J. Mol. Biol.   268,  78-94.
 6. Salamov AA, Solovyev VV. (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522.
 7. Majoros, W.H., Pertea, M., and Salzberg, S.L. TigrScan and GlimmerHMM: two open-source ab initio eukaryotic gene-finders Bioinformatics 20, 2878-2879.
 8. G. Parra, E. Blanco, and R. Guigó, (2000) Geneid in Drosophila Genome Research 4, 511-515.
 9. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. (2008) Automated eukaryotic gene structure annotation using  
 EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9, R7
 10. Korf I. (2004) Gene finding in novel genomes. BMC Bioinformatics. 5, 59.
 11. Kan, Z., Rouchka, E.C., Gish, W., and States, D. 2001, Gene structure prediction and AS analysis using genomically aligned ESTs, Genome Res. 11, 889–900.
 12. Eyras, E., Caccamo, M., Curwen, V., and Clamp, M. 2004, ESTGenes: AS from ESTs in Ensembl, Genome Res. 14, 976–987.
 13. Kent, W.J. 2002, BLAT-The BLAST-Like Alignment Tool, Genome Res. 12, 565–664.
 14. Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M., Miller, W. 1998, Computer program for aligning a cDNA sequence with a genomic DNA sequence, Genome Res. 8,
 967–974.
 15. Huang X, Adams MD, Zhou H, Kerlavage AR. (1997) A tool for analyzing and annotating genomic sequences. Genomics. 46, 37–45.
 16. Wu TD, Watanabe CK. (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 21, 1859–1875.
 17. Birney E, Clamp M, Durbin R. (2004) GeneWise and Genomewise. Genome Res. 14, 988–995.

Posted by 人Co

2010/03/22 11:19 2010/03/22 11:19
, , , , , , , , , , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/61

[Quipu Issue Paper] Epigenomics Ⅱ - ChIP-seq

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번주 연재에서는 Next Generation Sequencing의 세 번째 Application인 Epigenomics 중에 단백질에 binding된 DNA 서열을 분리하여 NGS 방식의 시퀀싱을 통해 binding site를 동정하는 방법인 CHIP-Seq 분석 방법에 대해 알아보겠습니다.

2-3-2. ChIP-seq


 CHIP(chromatin-immunoprecipitation)은 특정 유전체 영역에 binding 하는 히스톤이나 전사 인자(Transcription Factors, TFs)와 같이 특정 DNA서열에 binding 하는 단백질과 genomic fragments를 분리하기 위해 많이 응용 되어 왔다. 이 기술은 빠르게 발전하여 large-scale의 TF-DNA interactions 혹은 chromatin packaging (histone modification을 통한 genomic DNA와의 packaging) 연구에 중심 기술로 자리 잡았다. CHIP-Seq은 기존의 CHIP-chip에서 보여 지던 해상도의 한계와 chip에 올려 진 프로브에 대한 한계를 극복하는 방법으로 단백질에 binding된 DNA 서열을 분리하여 NGS 방식의 시퀀싱 통해 binding site를 동정하는 방법으로 발전하였다(그림 3). 그 결과 genome wide epigenetic study가 가능하게 되었다.

사용자 삽입 이미지
그림 3. CHIP-Seq을 이용한 단백질 binding site 규명.
Genomic DNA와 특정 단백질의 binding 후 단백질 specific antibody를 이용하여 
분리한다. 이후 단백질을 제거하고 NGS 기술을 이용하여 시퀀싱 한다[5].

 CHIP-seq은 실험적으로 짧은 DNA 절편에 binding하는 특성 때문에 non-specific binding complex의 background 처리가 반드시 필요하다. 이를 해결하기 위해 실험적으로는 antibody 만을 사용한 대조군을 설정하여 비교하는 방법과, 통계학적으로는 주어진 단백질이 주어진 위치에 정확하게 binding 할 확률을 계산하도록 하는 것이다. 이때 genome 전체 서열(g)에 주어진 서열(t)이 정확하게 mapping될 확률은 t/g로 포아송 분포 (poisson distribution) 혹은 negative binomial distribution을 이용하여 추정하게 된다[3].
 이후 consensus binding sequence를 도출하게 되면 이를 데이터베이스로 하여 다른 종의 분석에 이용할 수 있게 된다. 이렇게 TF와 그에 관련된 정보로 전문화 하여 구축된 데이터베이스 중 거의 유일한 곳이 BIOBASETRANSFAC이다(그림4)[6].

사용자 삽입 이미지
그림 4. TRANSFAC.
Transcription factor와 binding site 및 관련
pathway정보를 담고 있는 유일한 TF database.

 TRANSFAC은 genome내의 유전자 upstream 분석에 기초 자료를 제공하여 유전자 조절 메카니즘 분석에 필수적으로 이용되고 있다. 실험적으로 검증된 TF의 정보를 manual curation을 통해 고품질의 데이터를 쌓아가고 있으며, 그간 CHIP-chip 방식의 데이터로 밝혀지던 정보들이 CHIP-seq 방식의 데이터로 전환 되면서 더욱 빠르게 진행되고 있어 이를 이용한 BIOBASE의 데이터베이스 또한 더욱 빠르게 쌓여갈 것으로 예상된다. 뿐만 아니라 이미 human의 경우 모든 유전자의 upstream을 분석하여 binding 가능한 TF를 제공하고 있으며, 이를 이용한 pathway 분석에도 많은 데이터와 분석 프로그램을 제공하고 있다. 그중 TRANSPATH는 affymatrix data를 이용한 발현 분석 시 DEGs의 pathway를 분석하는데 해당 유전자의 upstream에 존재하는 TFs와 관련 pathway를 분석하여 세포내 전체적인 유전자의 기능을 살펴볼 수 있도록 하였다[6].

 이러한 CHIP-Seq은 다양한 플랫폼에서 분석이 가능한 가운데, CLC NGS Cell을 이용하여 assembly를 진행하게 되면 genbank 형식의 ‘.gbk' 파일을 reference로 사용하여 GUI 형태로 유전체 전체의 분포를 확인할 수 있어 데이터 해석의 용이함을 얻을 수 있다(1-2. Assemble 참조). 또한 비슷하게 Illumina의 Genome Analyzer의 경우 ChIP-seq 분석을 통해 얻어진 작은 서열들을 ELAND를 이용하여 유전체에 정렬하게 되고 그 결과는 UCSC genome browser를 통해 유전체 내의 위치와 분포를 확인할 수 있다(그림 5).

사용자 삽입 이미지
그림 5. UCSC genome browser를 통한 TF binding site의 유전체 내 위치 확인.
붉은색으로 정렬된 바는 NGS로 시퀀싱 되어진 reads로
유전체와의 reference assemble를 통해 위치를 확인한다.[4]





다음 연재에서는 약 2주에 걸쳐 유전체 내의 유전자 위치와 기능을 해독하는 과정인 genome annotation에 대해 알아보겠습니다.
많은 관심 부탁드립니다.


참고문헌

 1. Horner DS, Pavesi G, Castrignanò T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G. (2009) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform. [Epub ahead of print]
 2. Weber M, Schubeler D. (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 19, 273-80
 3. Roch 454 : Applications - Epigenetics
 (http://www.454.com/applications/ChIP-seq-methylation-epigenetics.asp)
 4. Illumina : Applications - Gene Regulation and Epigenetic Analysis
 (http://www.illumina.com/applications.ilmn#dna_protein_interaction_analysis_chip_seq)
 5. Appied Biosystems : Applications & Technologies - The SOLiD System
 (http://www3.appliedbiosystems.com/AB_Home/applicationstechnologies/SOLiD-System-Sequencing-A/index.htm)
 6. Kel, A., Voss, N., Jauregui, R., Kel-Margoulis, O. and Wingender, E. (2006) Beyond microarrays: Find key transcription factors controlling signal transduction pathways BMC Bioinformatics. 7, S13



Posted by 人Co

2010/03/12 08:18 2010/03/12 08:18

NGS 분석전략 세미나 개최 후기

 지난 2월 5일, 저희 (주)인실리코젠의 Codes팀은 "Practical bioinformatics pipeline for NGS data"라는 주제로 세미나를 개최하였습니다.

사용자 삽입 이미지
이번 교육은 당사에서 발간한 Quipu Issue Paper 2호의 "NGS 시대의 분석전략 2"을 중심으로 최근 가장 이슈가 되고 있는 NGS 데이터의 assembly, 그리고 그 이후에 진행할 수 있는 다양한 분석들에 대한 내용들을 크게 3가지 세션으로 나누어 구성하였습니다. 또한 생물정보 분야의 중심 역할을 하고 있는 한국생명공학연구원 국가생물자원정보관리센터(KOBIC)의 많은 연구원분들을 대상으로 진행되었습니다.

사용자 삽입 이미지
NGS 데이터의 assembly는 유전체 분석에 있어서 데이터 플랫폼의 종류와 어떤 어셈블러를 사용하느냐에 따른 분석 전략 및 파이프라인은 꼭 필요할 것이라 생각합니다. 이에 첫 번째 세션De novo assemblyReference assembly에 사용되고 있는 여러 가지 어셈블러들의 종류, 장단점 비교, 실제 데이터 벤치마킹 결과 등에 대한 내용으로 준비하였고, 발표 중간중간 관련 사항에 대한 질문과 열띤 토론으로 참석하신 연구원분들의 많은 관심을 받았습니다.

사용자 삽입 이미지
두번째 세션 SNP 분석 방법 및 최근 capture array 분석의 실제 연구사례, 관련 솔루션 등을 소개한 variation 분석 파트와 EST 데이터를 이용한 functional annotation, Organism-specific 분석, Ortholog/Paralog 유전자 분석방법 등에 대한 expression 분석 파트로 구분되어 진행되었으며 마지막 세션은 NGS와 생물정보 파이프라인을 이용한 Genome annotation에 대한 내용으로 현재 NGS 염기서열 결정 이후 문제점 및 이슈를 분석하고 효율적인 전략들을 소개하였습니다. 또한 structural annotation과 functional annotation의 분석 방법 및 실제 Codes팀의 분석 컨설팅 파이프라인 관련하여도 설명 드릴 수 있는 좋은시간이 되었습니다.

사용자 삽입 이미지
이렇게 바쁜 와중에도 하루의 일정을 직접 방문하여 소화해주신 KOBIC 연구원분들께 감사의 인사를 드리며, 진행된 교육으로 인해서 NGS 데이터를 분석하고 연구하시는데 조금이나마 도움이 되었으면 하는 바램입니다. 또한 "NGS시대의 분석전략 3"의 발간도 부탁하실 정도로 기술소식지와 세미나에 큰 관심을 보여주셔서 더욱 뜻 깊은 시간이었고, 앞으로도 이러한 교육의 자리를 많이 준비하도록 노력하겠습니다.

사용자 삽입 이미지
책자로 발간되었지만, 이번 세미나 내용을 포함한 NGS시대의 분석전략은 더욱 많은 연구자분들께 유익한 정보를 제공해 드리고자 블로그 연재도 계속 진행중입니다. 이와 관련한 자세한 문의사항은 저희 (주)인실리코젠의 Codes팀에게 연락 부탁드립니다.

(Tel: 031-278-0061, E-mail: codes@insilicogen.com)



Posted by 人Co

2010/02/25 17:37 2010/02/25 17:37
, , , , , , , , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/48