Can I identify potential drug-drug interactions mediated by alterations of drug metabolism?


 drug 대사의 변경에 의해 조절되는 잠재적인 drug-drug interactions를 확인 할 수 있는가? 항응고제로 혈액응고를 방지하기 위한 약물로 알려진 쿠마딘의 대사에 대해 알아보고자 한다. 쿠마딘(와파린)은 항응고를 하는 약제로 혈관안에서 혈전이 형성되는것을 막아주기 때문에 주로 혈전 및 색전증 치료에 쓰이고 있다. 쿠마딘은 주로 간에서 대사되는데, 간 대사효소인 CYP3A4에 의해 미량 대사된다고 알려져 있다. PathwayStudio를 통해 쿠마딘과 CYP3A4의 관계를 알아보고 CYP3A4에 영향을 주는 약물에 대해 조사해봄으로써 durg-drug 상호작용을 확인해보고자 한다.

Step to follow


Step 1. Coumadin 검색

Information pane에서 coumadin을 검색한다. 검색된 coumadin을 복사하고 새 pathway 문서에 붙여넣기를 한다.

사용자 삽입 이미지


Step 2. Pathway 옵션 설정 및 Pathway 확인

coumadin이 어떤 효소에 의해 대사되는지 알아보 pathway로 나타내기 위해 옵션 설정 과정을 거친다. Advanced Build Pathway Wizard 에서 Add Neighbors > Directionality: “upstream” > Entity type: “protein” > Filter Parameters: “ChemicalReaction” 순으로 선택한다.

사용자 삽입 이미지

Step 3. Pathway 옵션 설정

coumadin의 대사에 관여하는 효소 15개를 확인하였고, 그 중에서 CYP3A4라는 효소는 다시 어떤 small molecule에 의해 영향을 받는지 알아보기 위해 pathway 찾기를 재수행한다. CYP3A4를 선택하고 Advanced Build Pathway Wizard 에서 Add Neighbors > Directionality: “upstream” > Entity type: “small molecule” > Filter Parameters: “DirectRegulation” 순으로 선택한다.

사용자 삽입 이미지

Step 4. Active Style 변경

Effect와 Reference 개수에 따라 그래프 보기에서도 효과를 나타내 줄 수 있다. Style 메뉴의 Active Style Sheet에서 By Effect를 선택하면 Effect의 Positive, Negative 효과에 따라 Relation 선색을 다르게 할 수 있으며, By Reference Count를 선택하면 Reference의 개수에 따라서 Relation 선색이 달라지는 것을 확인 할 수 있다.

사용자 삽입 이미지

아래 동영상보기를 하시면 4개의 Step을 한 번에 보실 수 있습니다.


Posted by 人Co

2010/10/25 08:43 2010/10/25 08:43

BKL TRANSFAC

 Biobase의 대표적인 제품군인 TRANSFAC은 eukaryotic gene regulation을 분석하기 위한 최적의 기초 데이터를 제공하고 있다. Transcription factors, miRNAs, 그리고 이들과 관련된 유전자의 프로모터 정보를 비롯하여 ChIP-Seq 데이터로부터 1,000,000건 이상의 binding sites 정보, 57,000건 이상의 human RNA polymeraseII의 위치정보를 포함하고  있다. 이들 정보는 모두 실험적으로 증명 되었거나 논문에 게재된 정보를 전문가의 리뷰를 통해 정확하면서도 통합적인 이해를 할 수 있도록 하였다.

 2010년 현재 TRANSFAC®의 데이터베이스는 DNA binding, expression 그리고 regulation에 관련한 전문가의 manual curation을 다음과 같이 수행하였다.

사용자 삽입 이미지

이들 데이터는 실험적으로

  • transcription factor binding site나 혹은 composite elements를 증명하고자       할 때,
  • promoter sequence를 찾고자 할 때
  • miRNA targets을 찾고자 할 때
  • 관심 있는 영역에 binding 가능한 transcription factor를  찾고자 할 때
  • transcription factor들 간의 조절을 알고자 할 때
 실험에 앞서 가능한 factor들의 기초 정보를 제공하게 된다. 따라서 microarray를 통한 유전자 발현 패턴을 분석했다면 동일한 발현 패턴을 보이는 유전자들의 상관관계를 분석하는데 많이 이용되며, 약리 반응이나 신물질의 target을 밝히는 데에도 기초 자료로 인용되고 있다.


TRANSFAC®의 데이터 구성


 TRANSFAC® Professional은 공개된 데이터에 비해 약 4년 정도의 데이터가 업데이트되어 있는 상태로 그 데이터양은 promoter서열이 약 280,000건, 700,000건의 ChIP-chip/-Seq 데이터를 더 포함하고 있다(figure 1).

사용자 삽입 이미지
Figure 1. Public database와 Professional version의 데이터양의 차이


이들의 자세한 내용은 figure 2에서 보여 지는 것과 같이 transcription factor의 서열 정보를 비롯한 binding 가능한 site정보, 도메인정보, regulation 정보를 총체적으로 담고 있다.

사용자 삽입 이미지
Figure 2. Transcription factor feature. Transcription factor의 서열 정보, 종 정보, 조직 정보, 도메인 정보, binding site 정보, interaction protein 정보, regulation정보를 총체적으로 서비스하고 있다.

 GO category정보 및 pathway정보도 가능한 모두 서비스가 되고 있어 세포내 생물학적 기능을 종합적으로 분석하고자 할 때 기초자료로 많은 정보를 주고 있다(figure3).

사용자 삽입 이미지
Figure 3. Transcription factor의 function 정보. Factor간의 interaction정보, pathway 정보, inhibitor 및 activator와 같은 regulation 정보 등을 문헌자료를 통해 데이터베이스화하고 서비스한다.



미지의 서열에 binding 가능한 transcription factor search.


 특정한 발현 패턴을 보이는 유전자의 발현 조절 메커니즘을 분석 하고자 할 때 기본적으로 유전자의 upstream 영역에서 작용하는 transcription factor(TF)를 알아보게 된다. TRNASFAC®은 기본적인 transcription factor 및 binding site에 대한 정보를 제공함과 동시에 미지 서열에 binding 가능한 transcription factor를 예측할 수 있는 MatchTM, PatchTM, 그리고 Catch® 프로그램도 제공하고 있다(Figure 4).

사용자 삽입 이미지
Figure 4. TRANSFAC Professional의 TF search를 위한 PATCH. Pattern match를 통한 미지의 서열에 binding 가능한 TF를 search한다. 이때 false positive를 최소화하기 위해 찾고자 하는 TF의 종 정보를 제한하여 식물 유전자의 경우 식물 데이터베이스를 사용하고 mamalian 유전자의 경우 mamalian 데이터베이스를 사용한다. 또한 특정 찾고자 하는 TF만을 대상으로 할 경우 분석자에 의해 선택된 TF만으로 구성된 프로파일을 제작하여 분석할 수도 있다.


 MatchTM는 TF의 binding site를 matrix로 구성하여 찾는 방법이며, PatchTM는 서열의 pattern match 방법을 이용하여 찾는 방법이다. Catch®는 composite elements를 찾고자 할 때 사용하게 되는데 보통 이들 프로그램을 모두 사용하여 가능한 모든 TF를 찾고 실험에 이용한다. 또한 실험적으로 하나하나 규명할 수도 있으나 유전체 전체 유전자를 대상으로 분석하고자 할 때, 웹으로 운영되는 다음 프로그램에 서열을 하나씩 분석하기는 매우 어려우므로 local 서버나 PC에 설치하여 batch로 서열을 분석할 수도 있다. 이후 얻어진 유전자의 upstream 영역에서 작용하는 TF의 profile정보는 통계적 기법을 통해 유의한 TF를 선별하기도 하고, 데이터베이스화하기도 한다.

또한 얼마 전 덴마크의 CLCBio사와의 협력을 통해 CLCMainWorkbench 혹은 CLCGenomicsWorkbench의 plug-in 기능을 통해 TF정보를 visualization 할 수도  있게 되었다. 따라서 NGS에 의한 RNA-seq 정보 및 유전자 발현정보와 함께 전사조절 ,    메커니즘까지 확대하여 함께 분석할 수 있는 최적의 데이터를 제공하고 있는 것이다.

사용자 삽입 이미지




Posted by 人Co

2010/04/27 14:55 2010/04/27 14:55

[Quipu Issue Paper] Epigenomics Ⅱ - ChIP-seq

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번주 연재에서는 Next Generation Sequencing의 세 번째 Application인 Epigenomics 중에 단백질에 binding된 DNA 서열을 분리하여 NGS 방식의 시퀀싱을 통해 binding site를 동정하는 방법인 CHIP-Seq 분석 방법에 대해 알아보겠습니다.

2-3-2. ChIP-seq


 CHIP(chromatin-immunoprecipitation)은 특정 유전체 영역에 binding 하는 히스톤이나 전사 인자(Transcription Factors, TFs)와 같이 특정 DNA서열에 binding 하는 단백질과 genomic fragments를 분리하기 위해 많이 응용 되어 왔다. 이 기술은 빠르게 발전하여 large-scale의 TF-DNA interactions 혹은 chromatin packaging (histone modification을 통한 genomic DNA와의 packaging) 연구에 중심 기술로 자리 잡았다. CHIP-Seq은 기존의 CHIP-chip에서 보여 지던 해상도의 한계와 chip에 올려 진 프로브에 대한 한계를 극복하는 방법으로 단백질에 binding된 DNA 서열을 분리하여 NGS 방식의 시퀀싱 통해 binding site를 동정하는 방법으로 발전하였다(그림 3). 그 결과 genome wide epigenetic study가 가능하게 되었다.

사용자 삽입 이미지
그림 3. CHIP-Seq을 이용한 단백질 binding site 규명.
Genomic DNA와 특정 단백질의 binding 후 단백질 specific antibody를 이용하여 
분리한다. 이후 단백질을 제거하고 NGS 기술을 이용하여 시퀀싱 한다[5].

 CHIP-seq은 실험적으로 짧은 DNA 절편에 binding하는 특성 때문에 non-specific binding complex의 background 처리가 반드시 필요하다. 이를 해결하기 위해 실험적으로는 antibody 만을 사용한 대조군을 설정하여 비교하는 방법과, 통계학적으로는 주어진 단백질이 주어진 위치에 정확하게 binding 할 확률을 계산하도록 하는 것이다. 이때 genome 전체 서열(g)에 주어진 서열(t)이 정확하게 mapping될 확률은 t/g로 포아송 분포 (poisson distribution) 혹은 negative binomial distribution을 이용하여 추정하게 된다[3].
 이후 consensus binding sequence를 도출하게 되면 이를 데이터베이스로 하여 다른 종의 분석에 이용할 수 있게 된다. 이렇게 TF와 그에 관련된 정보로 전문화 하여 구축된 데이터베이스 중 거의 유일한 곳이 BIOBASETRANSFAC이다(그림4)[6].

사용자 삽입 이미지
그림 4. TRANSFAC.
Transcription factor와 binding site 및 관련
pathway정보를 담고 있는 유일한 TF database.

 TRANSFAC은 genome내의 유전자 upstream 분석에 기초 자료를 제공하여 유전자 조절 메카니즘 분석에 필수적으로 이용되고 있다. 실험적으로 검증된 TF의 정보를 manual curation을 통해 고품질의 데이터를 쌓아가고 있으며, 그간 CHIP-chip 방식의 데이터로 밝혀지던 정보들이 CHIP-seq 방식의 데이터로 전환 되면서 더욱 빠르게 진행되고 있어 이를 이용한 BIOBASE의 데이터베이스 또한 더욱 빠르게 쌓여갈 것으로 예상된다. 뿐만 아니라 이미 human의 경우 모든 유전자의 upstream을 분석하여 binding 가능한 TF를 제공하고 있으며, 이를 이용한 pathway 분석에도 많은 데이터와 분석 프로그램을 제공하고 있다. 그중 TRANSPATH는 affymatrix data를 이용한 발현 분석 시 DEGs의 pathway를 분석하는데 해당 유전자의 upstream에 존재하는 TFs와 관련 pathway를 분석하여 세포내 전체적인 유전자의 기능을 살펴볼 수 있도록 하였다[6].

 이러한 CHIP-Seq은 다양한 플랫폼에서 분석이 가능한 가운데, CLC NGS Cell을 이용하여 assembly를 진행하게 되면 genbank 형식의 ‘.gbk' 파일을 reference로 사용하여 GUI 형태로 유전체 전체의 분포를 확인할 수 있어 데이터 해석의 용이함을 얻을 수 있다(1-2. Assemble 참조). 또한 비슷하게 Illumina의 Genome Analyzer의 경우 ChIP-seq 분석을 통해 얻어진 작은 서열들을 ELAND를 이용하여 유전체에 정렬하게 되고 그 결과는 UCSC genome browser를 통해 유전체 내의 위치와 분포를 확인할 수 있다(그림 5).

사용자 삽입 이미지
그림 5. UCSC genome browser를 통한 TF binding site의 유전체 내 위치 확인.
붉은색으로 정렬된 바는 NGS로 시퀀싱 되어진 reads로
유전체와의 reference assemble를 통해 위치를 확인한다.[4]





다음 연재에서는 약 2주에 걸쳐 유전체 내의 유전자 위치와 기능을 해독하는 과정인 genome annotation에 대해 알아보겠습니다.
많은 관심 부탁드립니다.


참고문헌

 1. Horner DS, Pavesi G, Castrignanò T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G. (2009) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform. [Epub ahead of print]
 2. Weber M, Schubeler D. (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 19, 273-80
 3. Roch 454 : Applications - Epigenetics
 (http://www.454.com/applications/ChIP-seq-methylation-epigenetics.asp)
 4. Illumina : Applications - Gene Regulation and Epigenetic Analysis
 (http://www.illumina.com/applications.ilmn#dna_protein_interaction_analysis_chip_seq)
 5. Appied Biosystems : Applications & Technologies - The SOLiD System
 (http://www3.appliedbiosystems.com/AB_Home/applicationstechnologies/SOLiD-System-Sequencing-A/index.htm)
 6. Kel, A., Voss, N., Jauregui, R., Kel-Margoulis, O. and Wingender, E. (2006) Beyond microarrays: Find key transcription factors controlling signal transduction pathways BMC Bioinformatics. 7, S13



Posted by 人Co

2010/03/12 08:18 2010/03/12 08:18

연재 순서

   1. Assembly
   2. Variation study
   3. Expression study
   4. Epigenomics
   5. Genome Annotation
   6. Next Generation Bioinformatics
   7. Data Management for web 2.0 Era
   8. Semantic Network for Integrated Biology Data
   9. Gene Network Discovery by Text-mining
  10. Centralization for High-throughput Data Analysis

이번 연재에서는 어제에 이어 Next Generation Sequencing의 두 번째 Application인 Expression study에 대한 내용으로 Differentially Expressed Genes(DEGs) Functional annotation 중에 Text-mining을 통한 대사회로 분석Promoter 영역 분석을 통한 발현 조절 메카니즘 분석에 대해 알아보겠습니다.

B. Text-mining을 통한 대사회로 분석


 대사회로 분석은 세포내 유전자들이 생물학적으로 기능이 유사하거나 동일한 조절 기작을 통해 동일 시간상에서 유사한 발현 양상을 보일 것이라는 가정 하에 이루어진다. 선별된 유전자들(DEGs) 사이에서의 대사회로 분석을 통하여 대사회로 내에서 유전자들의 발현양상에 따라 up-regulation 혹은 down-regulation 되는지 분석할 수 있다. 또한 이들 간의 signal 관계가 upstream에 존재하는지 down- stream에 존재하는지 여부를 분석할 수 있다. 이러한 분석이 가능한 프로그램으로는 Ariadne사의 Pathway Studio가 있다[16].

사용자 삽입 이미지
그림 7. DEG 유전자의 pathway 분석

DEGs를 이용한 pathway 분석으로 유전자간의 조절 관계와 upsteam, downstream 단백질을 GUI를 통한 그래픽으로 확인이 가능하다[16].

Pathway Studio는 차등발현유전자들을 조절하는 상위 조절인자를 분석하거나 차등발현유전자들이 공통적으로 작용하고 있는 질병, 세포내 프로세스 등을 분석할 수 있는 유용한 프로그램이다. 


C. Promoter 영역 분석을 통한 발현 조절 메카니즘 분석


 선별된 유전자에 대해서 유전자의 발현 양을 조절하고 세포내의 항상성 유지를 위해 여러 유전자들 간의 긴밀한 네트워크를 통해 이뤄지는 유전자 조절 메카니즘을 분석한다. 유전자의 구조 중에서 특히 유전자의 기능에 중요한 영향을 미치는 부분은 유전자의 발현을 조절하는 프로모터 영역이다. 프로모터를 포함한 유전자의 upstream에 존재하는 전사인자  binding site의 예측을 통해 유전자의 발현 조절이 어떠한 메카니즘을 통해 이뤄지는지를 분석한다.

사용자 삽입 이미지
그림 8. Upstream regulation 분석.
TransFac을 활용한 DEGs의 upstream에 존재하는 공통된 transcription factor를 탐색

가장 대표적인 프로그램으로 BIOBASE사의 TRNASFAC을 꼽을 수 있다[15]. 실험적으로 검증된 전사인자들로 생물 전문가의 꼼꼼한 검증을 통해 구축된 데이터베이스는 현재 인간을 중심으로 식물, 효모R에 이르기까지 계속해서 확대 되고 있다. TRANSFAC의 서브 프로그램인 Patch와 Match를 활용하면 미지의 유전자 upstream 서열의 binding 가능한 전사인자를 검색할 수 있고, 이는 유전자 네트워크에서의 생물학적인 의미를 찾을 수 있는 기초 데이터가 된다.

다음 연재에서는 유전자와 엑손의 발현 및 발현된 유전자의 각종 변이 등을 한 번에 연구할 수 있는 RNA-Seq기술에 대해 알아보겠습니다.

많은 관심 부탁드립니다.

참고문헌

1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 7, 621-628.
2. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40, 47–59
3. Rensink WA, Lee Y, Liu J, Iobst S, Ouyang S, Buell CR. (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics. 6, 124
4. Ronning,C.M. et al. (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol. 131, 419–429
5. Guo J, Zhu P, Wu C, Yu L, Zhao S, Gu X. (2003) In silico analysis indicates a similar gene expression pattern between human brain and testis. Cytogenet Genome Res. 103, 58-62
6. Benjamini, Y., Daniel Yekutieli. (2001) The control of the false discovery rate in multiple hypotheses testing under dependency. Annal. Stat. 4(29), 1165–1188
7. Tsai CA, Hsueh HM, Chen JJ. (2003) Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics. 59, 1071-81
8. Audic S, Claverie JM. (1997) The significance of digital gene expression profiles. Genome Res. 7, 986–995
9. Roche 454 : Products & Solutions - Multiplexing
(http://www.454.com/products-solutions/experimental-design-options/multiplexing.asp)
10. Tatusov RL, Koonin EV, Lipman DJ. (1997) A genomic perspective on protein families. Science. 278, 631-637
11. Kato T, Murata Y, Miura K, Asai K, Horton PB, Koji T, Fujibuchi W. (2006) Network-based de-noising improves prediction from microarray data, BMC Bioinformatics. 7, S4
12. Noh SJ, Lee K, Paik H, Hur CG. (2006) TISA: tissue-specific alternative splicing in human and mouse genes. DNA Res. 5, 229-243
13. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data, Genome Biol. 4, R28
14. GeneSpring GX : Products & Services - GeneSpring GX Software
(http://www.chem.agilent.com/en-US/products/software/lifesciencesinformatics/genespringgx/pages/default.aspx)
15. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prüss M, Reuter I, Schacherer F. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research. 28, 316-319
16. PathwayStudio : Products-pathway Studio
(http://www.ariadnegenomics.com/products/pathwaystudio/)
17. Eveland AL, McCarty DR, Koch KE. (2007) Transcript profiling by 3'-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146, 32-44.
18. Torres TT, Metta M, Ottenwälder B, Schlötterer C. (2008) Gene expression profiling by massively parallel sequencing. Genome Res. 1, 172-7.
19. Vega-Arreguín JC, Ibarra-Laclette E, Jiménez-Moraila B, Martínez O, Vielle-Calzada JP, Herrera-Estrella L, Herrera-Estrella A. (2009) Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics. 10, 299.
20. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature. 2456, 70-76.
21. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 302, 2141-2144.
22. Ledford H. (2008) Human genes are multitaskers. Nature. 456, 9.
23. CLC Genomics Workbench: RNA-Seq analysis
(http://www.clcbio.com/index.php?id=1330&manual=RNA_Seq_analysis.html)

Posted by 人Co

2010/03/03 10:03 2010/03/03 10:03