Can I identify potential drug-drug interactions mediated by alterations of drug metabolism?


 drug 대사의 변경에 의해 조절되는 잠재적인 drug-drug interactions를 확인 할 수 있는가? 항응고제로 혈액응고를 방지하기 위한 약물로 알려진 쿠마딘의 대사에 대해 알아보고자 한다. 쿠마딘(와파린)은 항응고를 하는 약제로 혈관안에서 혈전이 형성되는것을 막아주기 때문에 주로 혈전 및 색전증 치료에 쓰이고 있다. 쿠마딘은 주로 간에서 대사되는데, 간 대사효소인 CYP3A4에 의해 미량 대사된다고 알려져 있다. PathwayStudio를 통해 쿠마딘과 CYP3A4의 관계를 알아보고 CYP3A4에 영향을 주는 약물에 대해 조사해봄으로써 durg-drug 상호작용을 확인해보고자 한다.

Step to follow


Step 1. Coumadin 검색

Information pane에서 coumadin을 검색한다. 검색된 coumadin을 복사하고 새 pathway 문서에 붙여넣기를 한다.

사용자 삽입 이미지


Step 2. Pathway 옵션 설정 및 Pathway 확인

coumadin이 어떤 효소에 의해 대사되는지 알아보 pathway로 나타내기 위해 옵션 설정 과정을 거친다. Advanced Build Pathway Wizard 에서 Add Neighbors > Directionality: “upstream” > Entity type: “protein” > Filter Parameters: “ChemicalReaction” 순으로 선택한다.

사용자 삽입 이미지

Step 3. Pathway 옵션 설정

coumadin의 대사에 관여하는 효소 15개를 확인하였고, 그 중에서 CYP3A4라는 효소는 다시 어떤 small molecule에 의해 영향을 받는지 알아보기 위해 pathway 찾기를 재수행한다. CYP3A4를 선택하고 Advanced Build Pathway Wizard 에서 Add Neighbors > Directionality: “upstream” > Entity type: “small molecule” > Filter Parameters: “DirectRegulation” 순으로 선택한다.

사용자 삽입 이미지

Step 4. Active Style 변경

Effect와 Reference 개수에 따라 그래프 보기에서도 효과를 나타내 줄 수 있다. Style 메뉴의 Active Style Sheet에서 By Effect를 선택하면 Effect의 Positive, Negative 효과에 따라 Relation 선색을 다르게 할 수 있으며, By Reference Count를 선택하면 Reference의 개수에 따라서 Relation 선색이 달라지는 것을 확인 할 수 있다.

사용자 삽입 이미지

아래 동영상보기를 하시면 4개의 Step을 한 번에 보실 수 있습니다.


Posted by 人Co

2010/10/25 08:43 2010/10/25 08:43

How can I find candidate genes related to a specific plant trait?


특정 식물의 특성과 관련이 있는 후보 유전자는 어떻게 찾을 수 있을까?
식물의 특성 중에서도 과일 단계에서 과일의 크기, 모양, 색과 같은 다양한 특성에 관련된 유전자를 찾는 방법에 대해서 알아보고자 한다. 또한 과일의 색에 영향을 주는 유전자들을 찾았다고 한다면 유전자들 중에서 영향을 많이 준 순서대로 보는 방법과 과일의 색과 유전자의 관계를 뒷받침해주는 논문의 수가 많은 순서대로 보는 방법도 함께 소개한다.

Step to follow


Step 1. Fruit 검색

Search Entities by keword를 통해 과일과 관련이 있는 Cell Process만 검색한다. 검색된 Cell Process 중에 보고자 하는 것만 선택하고 복사한 뒤 새 Pathway 문서에 붙여넣기 한다.

사용자 삽입 이미지

Step 2. Pathway 옵션 설정

선택한 Cell Process와 관련이 있는 유전자를 찾고 Pathway로 나타내기 위해 옵션 설정 과정을 거친다. Advanced Build Pathway Wizard 에서 Add Neighbors > Directionality: “Upstream” > Entity type: “Protein” > Filter Parameters: “Regulation” 순으로 선택한다.

사용자 삽입 이미지
Step 3. Entity Table 보기(View > Entity Table View)

엔티티 테이블 보기를 하면 Pathway에 있는 모든 엔티티에 대한 정보를 테이블 형태로 볼 수 있다. 테이블 컬럼 중에 Outdegree 컬럼을 내림차순으로 정렬하면 과일의 특성과 관련된 유전자 중에서 많은 영향을 준 유전자 순으로 볼 수 있다.

사용자 삽입 이미지

Step 4. Relation Table 보기(View > Relation Table View)

Relation 테이블 보기는 Pathway의 Relation에 대한 정보들을 테이블 형태로 보여 주는 기능을 한다. # of Reference 컬럼을 내림차순으로 정렬하면 Relation 정보를 뒷받침해주는 Reference가 많은 순으로 Effect 정보와 함께 볼 수 있다.

사용자 삽입 이미지
Step 5. Active Style 변경

Effect와 Reference 개수에 따라 그래프 보기에서도 효과를 나타내 줄 수 있다. Style 메뉴의 Active Style Sheet에서 By Effect를 선택하면 Effect의 Positive, Negative 효과에 따라 Relation 선색을 다르게 할 수 있으며, By Reference Count를 선택하면 Reference의 개수에 따라서 Relation 선색이 달라지는 것을 확인 할 수 있다.

사용자 삽입 이미지

아래 동영상보기를 하시면 5개의 Step을 한 번에 보실 수 있습니다.




Posted by 人Co

2010/10/18 10:44 2010/10/18 10:44

BKL TRANSFAC

 Biobase의 대표적인 제품군인 TRANSFAC은 eukaryotic gene regulation을 분석하기 위한 최적의 기초 데이터를 제공하고 있다. Transcription factors, miRNAs, 그리고 이들과 관련된 유전자의 프로모터 정보를 비롯하여 ChIP-Seq 데이터로부터 1,000,000건 이상의 binding sites 정보, 57,000건 이상의 human RNA polymeraseII의 위치정보를 포함하고  있다. 이들 정보는 모두 실험적으로 증명 되었거나 논문에 게재된 정보를 전문가의 리뷰를 통해 정확하면서도 통합적인 이해를 할 수 있도록 하였다.

 2010년 현재 TRANSFAC®의 데이터베이스는 DNA binding, expression 그리고 regulation에 관련한 전문가의 manual curation을 다음과 같이 수행하였다.

사용자 삽입 이미지

이들 데이터는 실험적으로

  • transcription factor binding site나 혹은 composite elements를 증명하고자       할 때,
  • promoter sequence를 찾고자 할 때
  • miRNA targets을 찾고자 할 때
  • 관심 있는 영역에 binding 가능한 transcription factor를  찾고자 할 때
  • transcription factor들 간의 조절을 알고자 할 때
 실험에 앞서 가능한 factor들의 기초 정보를 제공하게 된다. 따라서 microarray를 통한 유전자 발현 패턴을 분석했다면 동일한 발현 패턴을 보이는 유전자들의 상관관계를 분석하는데 많이 이용되며, 약리 반응이나 신물질의 target을 밝히는 데에도 기초 자료로 인용되고 있다.


TRANSFAC®의 데이터 구성


 TRANSFAC® Professional은 공개된 데이터에 비해 약 4년 정도의 데이터가 업데이트되어 있는 상태로 그 데이터양은 promoter서열이 약 280,000건, 700,000건의 ChIP-chip/-Seq 데이터를 더 포함하고 있다(figure 1).

사용자 삽입 이미지
Figure 1. Public database와 Professional version의 데이터양의 차이


이들의 자세한 내용은 figure 2에서 보여 지는 것과 같이 transcription factor의 서열 정보를 비롯한 binding 가능한 site정보, 도메인정보, regulation 정보를 총체적으로 담고 있다.

사용자 삽입 이미지
Figure 2. Transcription factor feature. Transcription factor의 서열 정보, 종 정보, 조직 정보, 도메인 정보, binding site 정보, interaction protein 정보, regulation정보를 총체적으로 서비스하고 있다.

 GO category정보 및 pathway정보도 가능한 모두 서비스가 되고 있어 세포내 생물학적 기능을 종합적으로 분석하고자 할 때 기초자료로 많은 정보를 주고 있다(figure3).

사용자 삽입 이미지
Figure 3. Transcription factor의 function 정보. Factor간의 interaction정보, pathway 정보, inhibitor 및 activator와 같은 regulation 정보 등을 문헌자료를 통해 데이터베이스화하고 서비스한다.



미지의 서열에 binding 가능한 transcription factor search.


 특정한 발현 패턴을 보이는 유전자의 발현 조절 메커니즘을 분석 하고자 할 때 기본적으로 유전자의 upstream 영역에서 작용하는 transcription factor(TF)를 알아보게 된다. TRNASFAC®은 기본적인 transcription factor 및 binding site에 대한 정보를 제공함과 동시에 미지 서열에 binding 가능한 transcription factor를 예측할 수 있는 MatchTM, PatchTM, 그리고 Catch® 프로그램도 제공하고 있다(Figure 4).

사용자 삽입 이미지
Figure 4. TRANSFAC Professional의 TF search를 위한 PATCH. Pattern match를 통한 미지의 서열에 binding 가능한 TF를 search한다. 이때 false positive를 최소화하기 위해 찾고자 하는 TF의 종 정보를 제한하여 식물 유전자의 경우 식물 데이터베이스를 사용하고 mamalian 유전자의 경우 mamalian 데이터베이스를 사용한다. 또한 특정 찾고자 하는 TF만을 대상으로 할 경우 분석자에 의해 선택된 TF만으로 구성된 프로파일을 제작하여 분석할 수도 있다.


 MatchTM는 TF의 binding site를 matrix로 구성하여 찾는 방법이며, PatchTM는 서열의 pattern match 방법을 이용하여 찾는 방법이다. Catch®는 composite elements를 찾고자 할 때 사용하게 되는데 보통 이들 프로그램을 모두 사용하여 가능한 모든 TF를 찾고 실험에 이용한다. 또한 실험적으로 하나하나 규명할 수도 있으나 유전체 전체 유전자를 대상으로 분석하고자 할 때, 웹으로 운영되는 다음 프로그램에 서열을 하나씩 분석하기는 매우 어려우므로 local 서버나 PC에 설치하여 batch로 서열을 분석할 수도 있다. 이후 얻어진 유전자의 upstream 영역에서 작용하는 TF의 profile정보는 통계적 기법을 통해 유의한 TF를 선별하기도 하고, 데이터베이스화하기도 한다.

또한 얼마 전 덴마크의 CLCBio사와의 협력을 통해 CLCMainWorkbench 혹은 CLCGenomicsWorkbench의 plug-in 기능을 통해 TF정보를 visualization 할 수도  있게 되었다. 따라서 NGS에 의한 RNA-seq 정보 및 유전자 발현정보와 함께 전사조절 ,    메커니즘까지 확대하여 함께 분석할 수 있는 최적의 데이터를 제공하고 있는 것이다.

사용자 삽입 이미지




Posted by 人Co

2010/04/27 14:55 2010/04/27 14:55