오늘 블로그 주제는 과거 2016년 구글 Google I/O 에서 소개된 웹 기술 프로그레시브 웹앱(Progressive Web Apps)을 다루어 보고자 합니다.

구글에서는 프로그레시브 웹앱(이하 PWA)을 최고의 웹과 최고의 앱을 결합한 경험으로 정의하고 있는데요, 브라우저를 처음 방문하는 사용자에게 유용하며, 별도의 설치를 요구하지 않습니다. 이러한 PWA라는 웹 기술이 탄생하게 된 배경과 자세한 내용을 차근차근 알아가 보도록 하겠습니다.




과학기술정보통신부에서 발표한 '2019년 인터넷이용실태조사' 결과를 보면, 우리나라 가구의 인터넷 접속률은 99.7%로 거의 모든 가구에서 인터넷을 접속하고, 접속 가구는 와이파이(100%), 모바일 인터넷(94.9%) 등 무선방식을 통해 주로 접속하는 것으로 나타났습니다. 
 

 
2007년 아이폰이 처음 등장한 후 스마트기기 보급률은 급속히 증가했고 이동통신 기술의 발전으로 통신서비스의 중심이 데스크톱에서 모바일로 이동하는 등 2016년을 기점으로 모바일 시장 점유율이 데스크톱을 넘어서게 됐습니다. 데스크톱 뿐만 아니라 스마트폰, 태블릿, 심지어 TV에서도 웹에 접속할 수 있는 환경이 만들어짐으로써 언제 어디서나 정보로의 접근이 가능해졌습니다.
 

[Flg.2] Desktop vs Mobile Market Share Worldwide

웹(Web)에 접근할 수 있는 기기의 폭이 넓어진 만큼, 다양한 기기에 대응하기 위해 유연한 너비와 유연한 이미지, 미디어 쿼리를 이용해서 기기 사이즈에 맞추어 레이아웃을 재구성하는 반응형 웹(Responsive Web) 기술이 보편화하였습니다.
 
그러나 그림에서 보듯이 모바일 환경에서는 대부분의 사람이 웹(Web)보다는 앱(App)에서 더 많은 시간을 보낸다는 것을 알 수 있습니다. 모바일 환경에서 웹보다 앱을 더 선호하는 이유는 앱이 웹보다는 더 빠르고 편하며 사용성이 좋기 때문입니다.


[Flg.3] Share of time spent on Mobile: App vs Web




2015년에 구글 크롬의 엔지니어 알렉스 러셀(Alex Russel)이 자신의 블로그에 'Progressive Web Apps: Escaping Tabs Without Losing Our Soul' 라는 제목의 글을 통해 차세대 웹의 개념, 즉 웹은 웹인데 점진적으로 앱 수준으로 근접해가는 웹이라는 개념의 아이디어를 제공했습니다. 그리고 이듬해 Google I/O(개발자 콘퍼런스) 2016에서 PWA를 미래의 웹 기술로 소개합니다.
비록 웹이지만 데스크톱이나 모바일에서 설치가 가능하고 앱과 유사한 사용자 환경을 제공해주며 하이브리드앱(Hybrid App)과 비교했을 때 보다 간편하게 설치와 개발을 할 수 있고 무엇보다 검색이 가능합니다. 앱과 유사한 경험을 지원하기 위해 푸쉬알림(Push Notification), 설치(Install), 오프라인 실행(Offline Access) 등의 기능도 지원합니다.
PWA에 대한 설명에서 가장 자주 등장하는 단어는 'App like'와 'Natively' 이지만 링크(URL)로 공유가 가능한 웹 페이지입니다. 즉, PWA는 다음 그림과 같이 앱(App)이 가지고 있는 높은 품질(Capability)과 웹(Web)의 넓은 도달 범위(Reach)를 결합한 개발 형태입니다.
 

[Flg.4] 앱과 웹, 프로그레시브 웹의 기능 및 도달 범위,



 
  • 반응형(Responsive) 기기에 따라 레이아웃을 자동으로 조정하는 등 다양한 플랫폼과 여러 기기에서 동일한 사용자 경험(UX)을 제공해줍니다.
  • 연결 독립적(Reliable) 로컬 기기의 캐시를 활용하여 오프라인이나 불안한 네트워크에서도 실행할 수 있습니다.
  • 재참여 가능(Engageble) 브라우저가 닫혀 있더라도 푸쉬 알람(Push Notification)을 보낼 수 있어서 재방문율을 높여줍니다.
  • 안전성(Safe) HTTPS 통신으로 제공되므로 기존 웹 대비 안전합니다.
  • 설치 가능한 경험 제공(Installable) 앱스토어를 찾지 않아도 브라우저에서 바로 빠르고 간단히 홈스크린에 앱을 둘 수 있습니다.
  • 검색을 통해 발견 가능(Search) 구글, 네이버 등 포털 검색 결과에 노출됩니다.
  • 링크 연결 가능 링크(URL)를 통해 손쉽게 공유할 수 있습니다.
  • 즉각적인 업데이트
  • 경량
 
 


  • 로딩 속도와 성능이 다소 떨어집니다.
  • 일부 플랫폼에 제한이 있습니다.
  • 크롬, 오페라, 파이어폭스에서는 동작하지만, 사파리 브라우저에서 지원되지 않습니다.
  • 아이폰에서 푸시알림을 보낼 수 없고 Siri와 통합할 수 없는 등 일부 기기에서 기본 기능에 제한이 있습니다.
  • 지오 펜싱, 지문 스캐닝, NFC, Bluetooth 및 고급 카메라 기능과 같은 장치 기본 기능을 지원하지 못합니다.
  • PWA를 사용하려면 인터넷에 액세스해야 하므로 배터리 수명을 더 빨리 소모합니다.




PWA는 최신 웹 기능을 활용합니다.
  • 웹 메니페스트(Web App Manifest) 브라우저가 웹 앱을 설치할 때 그리고 홈 화면에서 웹 앱을 적절히 표현하는 데 필요한 정보 등을 담고 있습니다.
  • 서비스 워커(Service Worker) 브라우저가 백그라운드에서 실행하는 스크립트로, 웹페이지와는 별개로 작동하며, 푸시 알림(Push Notification, Android Chrome 한정) 및 백그라운드 동기화(Background Sync, Android Chrome 한정)와 같은 기능 등 웹페이지 또는 사용자 상호작용이 필요하지 않은 기능에 대해 지원합니다.
  • 반응형 웹(Responsive Web) 현재 사용되는 대부분의 반응형 웹 기술들을 사용합니다.




앱을 다운로드하지 않고 웹주소를 클릭해 앱과 유사한 서비스를 이용하게 해주는 PWA 장점을 살려 여행, 유통, 뉴스 분야에 활용도가 높을 것으로 보입니다. 핀터레스트(Pinterest), 알리바바(Alibaba), 트위터 라이트(Twitter Lite) 등 PWA 도입으로 접속 시간은 상승하고, 이탈률은 감소하는 등 유의미한 결과를 얻는 많은 사례를 볼 수 있습니다.
  • 핀터레스트(Pinterest)
    • 평균 접속 시간이 40% 증가하였고 사용자 생성 광고 수익이 44% 증가, 핵심 사용자 참여율이 60% 증가하였다고 보고하고 있습니다.
    • 안드로이드 및 아이폰 앱과 비교하면 9.6MB 및 56MB에 비해 150KB로 매우 가볍습니다.
 


[Flag. 5] PWA Pinterest
 

 
현재 구글을 주축으로 마이크로소프트(MS), 모질라(Mozilla), 오페라(Opera) 등이 동참하고 있고 대부분의 안드로이드 기기에서는 PWA를 완벽하게 지원하지만 아쉽게도 iOS 기기에서는 여전히 제한적입니다.
그럼에도 불구하고 우리나라에서도 대표적 쇼핑몰 플랫폼 CAFE24가 PWA를 적용한 '스마트웹 앱'을 출시하는 등 점점 많은 전자 상거래 사이트에 PWA를 적용해서 구현하고 있습니다. 이는 앱을 개발하는데 드는 비용 대비 비교적 적은 자원으로 높은 효율을 기대하는 것을 목표로 하는 전자 상거래 사이트에 대안이 될 수 있기 때문입니다.
(주)인실리코젠의 자회사인 (주)디이프 에서도 현재 서비스중인 아이푸드진 앱을 개발할 당시 여러 기술들 중 하나로 PWA도 함께 고려한 바 있습니다. 비록 네이티브 앱의 기능을 충분히 활용하고 호환성에서 높은 점수를 얻은 플러터(Flutter)가 채택되었지만, 사용자 친화적인 앱을 만드는데 이제 더 이상 웹 기술을 포기할 필요가 없어졌습니다. PWA가 아직 완벽하지 않지만, iOS나 안드로이드 같은 플랫폼 전용 폐쇄적인 앱에 비해 유연하고 개방적이어서 플랫폼에 종속되지 않는 웹의 특성으로 볼 때 PWA의 더 큰 성장을 기대해봅니다.
 



작성 : FED 팀 김태영 선임 개발자
 

Posted by 人Co

2020/07/04 18:42 2020/07/04 18:42
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/350

[Fig.1] 인실리코젠 IX팀
(출처:(주)인실리코젠)

올해 인실리코젠의 Descign(Design+Science+Management)팀 명칭이 IX팀으로 개편되었습니다. IX는 다양한 기술을 통합(Integration)하여 상호작용(Interaction)적인 서비스와 혁신적인(Innovation) 사용자 경험을 디자인하는 부서로 변화하였습니다. 금일 준비한 포스트도 부서의 방향성과 어울리는 콘텐츠로 준비하였습니다.

사용성 테스트의 니즈

[Fig.2] Usability Testing Illustration

편리한 시스템과 서비스를 디자인할 때 필요한 요소 중 하나는 사용성 테스팅(Usability Testing) 입니다. 테스팅은 예측하지 못했던 문제나 유저(User)들의 어려움을 찾아낼 수 있도록 도와주는 데 큰 역할을 합니다. 그럼 언제 사용성 테스트를 진행하는 것이 좋을까요? 일반적으로 디자인(기획) 단계에서 구상한 아이디어를 프로토타입 하여 진행합니다. 테스트 과정 중에 문제를 미리 발견하여 기업이 투여 시간과 비용적인 손실을 최소화할 수 있게 도와주기 때문입니다. 현재 이를 도와주는 다양한 테스팅 방법들이 존재합니다. 그중 Wizard of Oz(WOZ) 테스팅 기법을 소개해 드리려 합니다.

Wizard of Oz(WOZ) 테스팅은 어떤 건가요?


[Fig.3] Wizard of Oz Film

누구나 한 번쯤은 오즈의 마법사(Wizard of OZ) 영화를 보셨을 것입니다. 이쯤 되면 테스팅 방법과 오즈의 마법사 스토리와의 연관성에 대해 궁금증이 생기실 듯합니다. 극 중 마법사인 오즈는 자신의 진짜 모습(서커스에서 마술하는 사람)을 복화술로 숨기고 엄청난 대마법사인 것처럼 모두를 속입니다. 마법사 오즈처럼 Wizard of Oz 테스팅도 사용자들이 실제 개발되지 않은 서비스를 실존하는 서비스처럼 착각하게 하여 테스팅을 진행하는 방법입니다. 아래 IBM의 ‘The listening type writer’ 일러스트 이미지를 보시면 조금 더 이해가 되실 겁니다. 사용자가 컴퓨터 마이크에 “Dear Henry”라고 말을 하면 커튼 뒤에 또 다른 사람(wizard)이 직접 사용자의 말을 듣고 타이핑을 해줍니다. 이를 모르는 사용자로서는 컴퓨터가 출력해주었다고 생각하며 편리한 기능이라고 생각할 것입니다.

[Fig.4] Wizard of Oz Prototyping

어떻게 활용되나요?

WOZ 방법론은 가설을 빠르게 검증할 수 없는 AI(인공지능) 프로젝트에서 많이 활용되며 데이터가 없거나 기술이 완벽하지 않은 상황에서도 테스트를 진행할 수 있습니다. 또한, 시스템에 대한 사용자의 반응을 확인하며 반복적인 테스트를 통해 사용자 경험을 점진적으로 발전시킬 수 있습니다. 테스팅을 진행하기 전 명심해야 할 부분은 얻고자 하는 인사이트가 무엇인지 결정하는 것과 테스트 시 사용자들이 느끼기에 그럴듯하게(Believable) 프로토타입을 제작해야 합니다. 그리고 너무 복잡한 인터페이스 보다는 간단한 형태의 기능을 테스트하는 것이 효율적입니다.

인실리코젠에서는 생물정보를 활용하여 다양한 시스템을 개발하고 있습니다. 사용자 친화적이며 효율적으로 서비스를 디자인 및 개발을 하기 위하여 WOZ 방법론에 대해 알아보았습니다. 향후 직접 프로젝트에 적용해본 후 그 효과나 장단점에 대해서 알려드리겠습니다.

출처

[Reference 1] "Wizard of Oz testing – a method of testing a system that does not yet exist.", 2020년 6월 10일 접속, https://www.simpleusability.com/inspiration/2018/08/wizard-of-oz-testing-a-method-of-testing-a-system-that-does-not-yet-exist/

[Reference 2] "Making the machine believable: Wizard of Oz-ing AI applications.", 2020년 6월 12일 접속, https://uxdesign.cc/making-the-machine-believable-wizard-of-oz-ing-ai-applications-293cfbb0f244

[Reference 3] "[인공지능 in IT] 인공지능 UX 디자인 – 디자인 프로세스로 사용자 경험 설계하기.", 2020년 6월 12일 접속, https://www.donga.com/news/article/all/20190515/95530568/1

작성 : IX Team 김지인 주임 UX/UI 디자이너

Posted by 人Co

2020/06/22 14:14 2020/06/22 14:14
, , , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/349

[Webinar] 제4회 유전체 데이터 분석 교육

Posted by 人Co

2020/06/11 14:22 2020/06/11 14:22
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/348

[모집공고] 人Co INTERNSHIP 2020 하계




[모집분야]
- 지원대상 : 학사 기졸업자 또는 졸업예정자
- 지원기간 : 2020년 6월 8일(월) ~ 6월 17일(수)
- 지원서류 : 지원서(첨부된 당사 양식),
                 성적증명서 및 졸업증명서(기졸업자 또는 졸업예정자 대상)
- 지원방법 : 지원서류를 메일로 발송 (recruit@insilicogen.com)

[전형일정]

- 1차 서류전형 : 2020년 6월 19일(금) 서류합격 발표 (개별연락)
- 2차 면접전형 : 2020년 6월 22일(월) ~ 6월 24일(수)
- 최종 합격자발표 : 2020년 6월 26일(금)
- 인턴근무지 : 본사(경기도 용인시)
- 인턴기간 : 총 6주(2020년 7월 6일(월) ~ 8월 14일(금))
- 인턴혜택 : 1. 생물정보 기초 교육 커리큘럼
                  2. 기업 공통업무 기본역량 습득
                  3. 점심 제공
                  4. 수료증 발급
- 별도 공지사항 : 인턴십 기간 동안 정직원과 동일하게 출퇴근 규정 엄수
                         중도 이탈자 수료 불인정

[입사지원서 양식]

Posted by 人Co

2020/06/08 19:39 2020/06/08 19:39
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/347

 
최근 여러 분야에서 딥러닝에 대한 관심이 많아지고 있습니다.
생물정보 분야에서는 MRI나 CT 같은 의료 이미지로 학습한 뒤, 질병을 진단하는 연구가 많이 진행되고 있습니다. 그렇다면 이미지를 이용한 딥러닝은 어떤 방식으로 진행될까요?

이미지 딥러닝은 어떠한지 알고 싶어도 코드 위주의 설명이 많아, 코드가 익숙하지 않은 분들은 시작부터 벽이 세워진 느낌이 드셨을 거예요.
코드가 익숙하신 분이시든 그렇지 않은 분이시든 이미지 딥러닝의 입문자분들께 개념 잡는 것에 대해 조금이나마 도움이 되셨으면 하여 알고리즘 개념 설명 위주로 이 글을 준비하였습니다. 그럼 이미지 딥러닝을 하기 위한 알고리즘에 대해 알아보기에 앞서, 컴퓨터는 이미지 파일을 어떤 방식으로 인식하는지에 대해 알아볼까요?
 
 


우리가 이미지를 인식하는 방식과 컴퓨터가 이미지를 인식하는 방식은 많이 다릅니다. 우리는 이미지를 눈에 보이는 모습을 그대로 받아들이지만, 컴퓨터의 경우는 숫자로 된 형태로 인식합니다. 숫자는 색의 명암을 나타내며, 0에 가까울수록 어두운색이고 255에 가까울수록 밝은색입니다. 그렇다면 색상은 어떻게 표현할까요? 흑백 이미지의 경우에는 1개의 채널로, 컬러 이미지의 경우엔 RGB(R-Red, G-Green, B-Blue) 3개의 채널로 빨강, 초록, 파란색 각각의 명암을 이용하여 이미지의 색상을 표현합니다.


[그림 1] 컬러 이미지의 구조 - Insilicogen (IX Team)

컬러 이미지는 각 픽셀을 채널별로 실수로 표현된 3차원 데이터입니다. 흑백 이미지는 2차원 데이터로, 1개의 채널로만 구성되어 있습니다.
[그림 2] 컬러 이미지의 3차 구조
위의 그림처럼 높이가 4 pixel, 폭이 4 pixel의 이미지일 경우,
 
컬러 이미지 데이터의 shape은 (4, 4, 3)
흑백 이미지 데이터의 shape은 (4, 4, 1)
 
로 표현합니다.
 
컴퓨터가 이미지를 어떤 방식으로 인식하는지에 대해 간단하게 알아봤습니다. 그럼 이제 이미지 딥러닝에선 어떤 알고리즘이 주로 사용되는지 알아볼까요? 딥러닝을 이용하여 이미지를 분류할 때에는 주로 CNN(Convolutional Neural Network) 알고리즘이 많이 사용되고 있습니다. 그렇다면, 이 CNN 알고리즘이 나오기 이전에는 어떻게 학습을 했을까요?
 

  
 
CNN 알고리즘 이전에는 Fully-connected Multi-layered Neural Network의 학습 방식을 이용하여 이미지 딥러닝을 수행했습니다.
 
[그림 3] Fully-connected Multi-layered Neural Network
형상을 가졌는지에 대해 알 수 없고, 각각의 픽셀을 1차원적으로 보게 됩니다. 이러한 학습 방식으로 인하여 이미지의 크기가 커져서 픽셀의 수가 많아진다거나 은닉층(Hidden layer)의 수가 증가하면 학습시간 및 학습해야 하는 매개변수(Parameter)의 수가 기하급수적으로 증가하게 됩니다. 또한, 이미지가 살짝 회전되었거나 gif처럼 이미지가 움직이는 상태라면 이를 같은 이미지라고 인식하지 못하므로, 조금이라도 변화가 생길 때마다 새로운 입력으로 이미지 데이터를 처리해 주어야 합니다. 그럼 이미지를 분류하기 위해 Fully-connected 학습 방식처럼 이미지의 모든 픽셀이 꼭 중요할까요? 그렇지 않습니다. 이미지의 특성을 찾는 데에 중요하게 작용하는 픽셀이 있지만, 단순히 배경인 부분이라 픽셀 정보를 가지고 있지 않더라도 이미지를 구분하는 데 큰 영향을 주지 않기 때문입니다. 이미지 분류를 하는 데 중요하지 않은 픽셀은 제거하고 학습을 하기 위해 고안된 알고리즘이 바로CNN(Convolutional Neural Network)입니다.
 

 
 
그렇다면 CNN 알고리즘은 어떠한 구조를 이루고 있을까요?
 
 
[그림 3] CNN 알고리즘의 구조
 
CNN은 크게 이미지의 특징을 추출하는 부분과 클래스를 분류하는 부분으로 나뉩니다. 특징 추출 영역은 합성곱층(Convolution layer)과 풀링층(Pooling layer)을 여러 겹 쌓는 형태(Conv+Maxpool)로 구성되어 있습니다. 그리고 이미지의 클래스를 분류하는 부분은 Fully connected(FC) 학습 방식으로 이미지 분류를 합니다.
 

 
 
합성곱이란, 주어진 이미지 데이터를 합성곱 필터(Convolution filter)를 통해 이미지 분류에 중요하게 작용할 feature들을 추출하는 데 사용됩니다. CNN 알고리즘 이전에 사용되었던 FC 알고리즘과 달리, 이미지의 형태를 유지하기 때문에 합성곱층을 지나더라도 인접한 픽셀에 대한 정보를 알 수 있습니다. 그렇다면, 합성곱에서 사용되는 합성곱 필터는 무엇일까요? 우선, CNN에서 필터는 커널(Kernel)이라고도 합니다. 필터는 이미지의 공용 매개변수(weight)로 작용하며, 주어진 이미지를 슬라이딩하면서 이미지의 feature들을 찾아냅니다. 여기서 공용 매개변수라고 하는 이유는 합성곱을 진행할 때, 하나의 이미지에 대해서 하나의 필터가 사용되기 때문입니다. 일반적으로 (3, 3)이나 (4, 4)와 같은 정사각 행렬로 정의가 되고, 주어진 이미지를 지정된 간격(Stride)만큼 순회합니다. 그럼 합성곱 필터를 이용하여 합성곱 연산은 어떤 방식으로 진행되는지 알아보기 위해, 아래의 그림으로 설명하겠습니다.
 
 
[그림 5] Convolution 연산
 
위의 그림에서 주어진 이미지 데이터의 크기는 6x6이고, 필터의 크기는 3x3입니다. 이미지를 순회하는 간격(stride)은 1입니다. 연산은 이미지와 필터가 서로 겹쳐지는 부분은 곱을, 각각의 곱은 합하는 방식으로 진행됩니다. 위의 그림에서 Result 아래에 적힌 연산을 참고하시면 이해가 더 쉬우실 거예요.
 
Fig6.Convolution_layer.gif
 
위의 그림은 합성곱 연산이 진행되는 방식입니다. 이 그림 역시 필터가 이미지를 순회하는 간격은 1입니다. 이처럼 합성곱을 진행하여 얻어진 결과를 피처맵(Feature Map, 위의 그림에서는 오른쪽의 분홍색)을 만듭니다. 여기서 피처맵은 주어진 이미지에서 특징들을 추출한 것이고, 액티베이션맵(Activation Map)이라고도 합니다. 피처맵은 여러 가지의 의미로 사용되지만, 액티베이션맵은 주로 합성곱층의 최종 출력 결과를 의미합니다.

합성곱층에서 필터와 스트라이드의 작용으로 이미지(피처맵)의 크기는 입력 데이터보다 작아지게 됩니다. 그렇다면 합성곱층을 지나면 이미지가 자꾸 줄어드는데, 계속 반복적으로 합성곱층을 지나면 이미지가 없어지지 않을까? 라는 생각이 들게 되죠. 이를 방지하는 방법이 패딩(Padding)입니다. 패딩은 입력 데이터의 외각에 지정된 픽셀만큼 특정 값으로 채워 넣는 것을 의미하고, 보통 0으로 값을 채워 넣습니다.
 

 
 
위의 그림을 보면, 3x3 이미지의 외각에 0이 채워진 것을 볼 수 있습니다.
 
 

 
[그림 8] Pooling
지금까지 합성곱에 대해서 알아보았습니다. CNN 알고리즘에서 이미지 특징을 추출하는 부분에서 합성곱층 다음으로 나오는 층은 풀링층(Pooling layer)입니다. 합성곱층의 출력 데이터(액티베이션 맵)를 입력으로 받아, 출력 데이터의 크기를 줄이거나 특정 데이터를 강조하는 용도로 사용됩니다. 풀링층을 처리하는 방법으로는 Max, Average, Min Pooling이 있습니다. 정사각 행렬의 특정 영역 안에 값의 최댓값, 평균 혹은 최솟값을 구하는 방식이고, 주로 Max Pooling을 사용합니다. 앞의 합성곱처럼 인접한 픽셀값만을 사용한다는 것은 비슷하지만, 합성곱처럼 곱하거나 더하는 연산 과정이 없어서 학습이 필요한 부분이 없고 입력 데이터의 변화에 영향을 적게 받습니다. 이는 최댓값, 평균값, 최솟값 중 하나를 구하는 것이기 때문에, 입력 데이터가 조금 변하더라도 풀링의 결과는 크게 변하지 않습니다.
  

 
 
앞에서 설명해드렸던 바와 같이, CNN은 크게 특징 추출(Feature extraction) 부분과 분류(Classification) 부분으로 나뉩니다. 특징 추출은 합성곱층과 풀링층이 반복적으로 수행되고, 분류는 앞에서 추출된 Feature들이 Fully-connected layer 학습 방식을 이용하여 어떤 이미지인지 분류합니다.
 
참고) 학습시킬 이미지가 부족하시다면! 이미지 학습을 위한 open data source
 
이미지 분류하기 위해 이미지를 학습시킬 때, 하나의 클래스(ex. 강아지 클래스, 고양이 클래스)당 최소 1,000장이 필요합니다. 학습을 많이 시키면 많이 시킬수록 이미지를 분류하는 정확도는 당연히 올라갑니다. 그렇다면, 이미지 학습을 하기 위해서 많은 양의 이미지 데이터가 필요하겠죠? 딥러닝이 활성화되면서 공개 이미지를 수집하는 데이터베이스가 많아졌고, 대표적으로 ImageNet과 Kaggle 등이 있습니다. 이미지를 학습하는 데 필요한 이미지 데이터를 공개적으로 제공하는 사이트이므로, 아래 사이트를 들어가시면 이미지 딥러닝 활용에 여러 방면으로 도움이 될 것입니다. :)
 

[그림 9] ImageNet
(http://www.image-net.org/)


[그림 10] Kaggle
(https://www.kaggle.com/)


CNN 알고리즘에 대해서 더 자세하게 설명해 드리고 싶었지만, 그러면 본 취지에 맞지 않을 것 같았어요. 제가 생각하기에 이미지 딥러닝의 입문자분들께 가장 필요한 부분 위주로 이 글을 작성하였습니다. 이 글에 적힌 것들을 바탕으로 궁금한 부분이 생길 때마다 조금씩 조금씩 자료를 찾다 보면, 깨닫지 못한 사이에 이미지 딥러닝에 대해 많이 알게 되실 거예요. 조금이나마 도움이 되셨길 바라며, 너무 두려워하지 마시고 힘내시길 바랍니다. :D
 
 

Posted by 人Co

2020/06/01 19:28 2020/06/01 19:28
, , ,
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/346



« Previous : 1 : ... 5 : 6 : 7 : 8 : 9 : 10 : 11 : 12 : 13 : ... 75 : Next »