[Quipu Issue Paper] Bioinformatics Knowledge Management Ⅲ- Semantic Network for Integrated Biology Data
- Posted at 2010/04/01 15:00
- Filed under 생물정보
연재 순서
1. Assembly
2. Variation study
3. Expression study
4. Epigenomics
5. Genome Annotation
6. Next Generation Bioinformatics
7. Data Management for web 2.0 Era
8. Semantic Network for Integrated Biology Data
9. Gene Network Discovery by Text-mining
10. Centralization for High-throughput Data Analysis
이번 연재에서는 생물학의 많은 데이터를 활용하여 새로운 의미를 발굴할 수 있는 Semantic Network for Integrated Biology Data에 대해 알아보겠습니다.
3-3. Semantic Network for Integrated Biology Data
쌓여있는 유전체 데이터와 각종 실험을 통해서 얻어진 수많은 데이터 사이에서 새롭게 응용할 수 있는 지식은 무엇일까? 인터넷이 발달된 최근에는 인터넷 쇼핑이 괄목할 만한 성장을 보이고 있으며, 고객들에게 좀 더 좋은 정보를 제공하고자 다양한 알고리즘 및 분석기법을 적용하고 있다. 예를 들어서 상품을 주문한 고객의 구매 목록에 대한 특징을 찾아서 비슷한 성향의 신제품이 있으면 자동으로 고객에게 이메일로 상품광고를 전달하는 것과 같은 맞춤형 광고기법이 한 예일 것이다.
이와 맞물려 생물학의 많은 데이터를 활용하여 새로운 의미를 발굴할 수 있는 방법을 찾고자 하는 연구들이 진행되고 있으며, 이와 관련한 의미론적 지식 정보 추출을 위한 시스템이 개발되고 있다. 또한 최근의 연구 동향은 단순히 데이터를 생성하고 쌓아두는 것 보다 각 생물학 데이터들의 연관관계를 도출하여 어떻게 각 데이터들을 연결하여 새로운 정보를 발굴할 것인가라는 ‘How to link between the data’에 초점이 맞추어져 있다.
축적된 생물학 데이터에서 새로운 의미를 발굴할 수 있도록 지원하는 시스템 가운데 Biomax Informatics AG사 BioXM 지식관리 시스템을 꼽을 수 있다. BioXM 은 연구실 및 센터의 다양한 생물, 생명, 의학 관련 데이터에서 의미론적 정보를 추출할 수 있도록 데이터의 시맨틱 네트워크를 구축하는 플랫폼이다(그림 2).
그림 2. 데이터의 시멘틱 네트워크 흐름도
이미 미국 국립암센터(NCI)와 연계하여 시스템을 운용, 활용하여 암에 관련된 실험정보 및 분석정보, 문헌정보를 통합한 시스템을 구축한 바 있다(그림 3).
그림 3. BioXM의 데이터 통합 개념
이와 같은 지식관리 시스템은 기존에 구축한 수많은 실험정보, 분석정보, 문헌정보들 사이의 연관관계를 도출하여 새로운 의미를 찾고자 하는 바램을 충족시켜준다. 대다수의 시스템들이 RDBMS 형식의 데이터베이스로 구축되어 있으므로, 모든 데이터의 통합에 의한 새로운 형태의 의미를 발굴하기 위해서는 기존 시스템보다 더 확장된 형태의 데이터베이스 구축 및 IT 시스템 구축이 선행되어진다. 하지만 이와 같이 단순히 시스템의 확장 구축을 통해서는 얻어질 수 있는 데이터의 유기적 연관관계는 한계를 보이게 된다. 또한 데이터베이스의 확장이 진행될수록 생물학자들의 지식이 더 많이 요구되지만 IT와 BT 전문가의 상호 생각의 차이로 인해 최종적으로는 생물학자들이 원하는 형태가 아닌 별개의 시스템으로 구축되는 경우가 다반사이다. 이에 반해 BioXM 지식관리 시스템은 기존 데이터들을 새로운 데이터베이스 스키마를 설계하여 통합 연계하는 것이 아니라 각 생물학 데이터의 기존 의미를 알고 있는 연구자가 퍼즐을 맞춰가는 방식과 같이 edge와 node의 꼬리에 꼬리를 무는 방식으로 데이터들을 선택하여 서로 연계된 데이터들을 통합하고 관리하는 지식관리시스템이다. 이와 같은 방식으로 BioXM은 Genomics, Transcriptomics, Proteomics 등 다양한 omics 데이터들과 문헌정보 등을 손쉽게 통합할 수 있을 뿐만 아니라 다양한 방법으로 데이터를 조합하여 연구자가 알고자 원하는 질문에 알맞은 답을 얻도록 지원한다.
그림 4. Object와 Relation에 대한 개략적인 데이터 모델
그림 5는 환자에 관한 질병과 질병에 관련된 유전자와 대상 약물 및 임상실험과 같은 다양한 정보를 이용하여 그래픽 사용자 인터페이스 형태로 모델링을 구현한 사례를 보이고 있다. 지금 그림에서 보이고 있는 데이터 이외에 다양한 정보가 있을 경우에도 동일한 방법으로 모델링을 구현하여 좀 더 폭넓은 데이터 연관 관계도를 생성할 수 있다. 그림 5. BioXM 데이터 모델링 구현
BioXM 지식관리 시스템의 특징 및 장단점은 표 1과 같다.
암을 연구하는 연구자들은 자신이 가지고 있는 데이터를 이용하여 다음과 같은 다양한 궁금증을 표현할 수 있으며, BioMax사의 BioXM과 같은 시스템을 이용하여 각 데이터들의 네트워크를 구축하면 궁금증에 대한 답변을 얻을 수 있을 것이다. 이와 같은 지식 발굴 시스템은 다음과 같은 문제점을 해결하는데 도움을 줄 수 있다(그림 6).
암을 연구하는 연구자들은 자신이 가지고 있는 데이터를 이용하여 다음과 같은 다양한 궁금증을 표현할 수 있으며, BioMax사의 BioXM과 같은 시스템을 이용하여 각 데이터들의 네트워크를 구축하면 궁금증에 대한 답변을 얻을 수 있을 것이다. 이와 같은 지식 발굴 시스템은 다음과 같은 문제점을 해결하는데 도움을 줄 수 있다(그림 6).
그림 6. BioXM 시스템을 이용한 지식 네비게이션
다음 연재에서는 현재까지 공개 데이터베이스에 축적된 공개된 데이터 및 자신이 보유한 데이터를 이용하여 새로운 정보 및 생물학적 의미를 찾는 Gene Network Discovery by Text-mining에 대해 알아보겠습니다. 많은 관심 부탁드립니다.
Posted by 人Co
- Tag
- BioXM, Genomics, insilicogen, NCI, Network, NGS, Object, omics, Proteomics, Relation, Smantic, Transcriptomics, 대사회로정보, 인실리코젠, 임상실험, 질병
- Response
- No Trackback , No Comment
- RSS :
- https://post-blog.insilicogen.com/blog/rss/response/66
Trackback URL : 이 글에는 트랙백을 보낼 수 없습니다