분자진단 시장의 발전
- Posted at 2015/03/03 13:48
- Filed under 생물정보
“시퀀싱은 클리닉으로 이동 중”
질병 또는 병원균의 감염여부를 판단 ”
* IVD : In Vitro Diagnostics
분자 진단은 지금까지 숙련된 전문가와 고가의 시험장비가 필요했으나, 비용 절감, 자동화, 첨단 기술 도입에 의해 분자 진단 검사의 사용이 확대되고 있다. 원내감염 발병률 상승, 고령화, 환자 의식 향상 등 다양한 요인에 의해 시장은 향후에도 계속 성장할 것으로 예측된다. 또한 임상의학에서 유력한 플랫폼이 되고 있으며 진단 시장 중 급성장하고 있는 부문 중 하나이다. 수많은 분자검사가 CE 마크와 FDA 승인을 획득하고 있는것이 이를 반증하고 있다.
분자진단기술(PCR, Next Generation Sequencing, Microarray, Infectious diseases, Genetic disease, Oncology testing, Blood donor screening)은 급속히 진화하고 있는 분야로 새로운 기술과 응용이 차례로 등장하고 있다. 분자 진단에 포함되어 있는 기술에는 1세대 PCR 증폭, DNA Probe, 형광 In-situ Hybridization, 2세대 바이오칩과 마이크로 유체, 차세대 신호 검출, 바이오센서, 분자마커, 유전자 칩을 이용한 유전자 발현 프로파일링 등이 있다. 이들 기술은 암의 치료 분자를 발견하고, 환자의 스크리닝과 진단, 분류, 투약 치료의 최적화에 크게 기여하고 있다.
< 분자 진단 기술 출처: http://en.wikipedia.org/ >
최근 수년간 분자 진단 분야에서는 몇가지 획기적인 개발이 진행되고 있다. 그 중에서도 염기서열분석은 염기서열 이상으로 발생된 유전질환을 진단하기 위한 표준 검사로 분자 진단 검사에서는 핵심 진단기술로 발전했다. 1977년 Sanger에 의해 개발된 이후 약 25년간 널리 사용되다 최근에 더욱 빠른 속도로 발전하여 전혀 새로운 개념의 기술인 차세대 염기서열 시퀀싱(NGS)이 등장하였다.
< NGS 서열 분석 출처: http://bioinf.comav.upv.es >
유전체는 유전자의 전체를 의미한다. 유전체 기반의 분자 진단이라 하면 유전자 전체를 읽어 분자 진단에 활용하는 기술이다. 유전체 시퀀싱 비용이 감소하면서, 유전자 한 두 개를 읽어서 분자 진단을 하던 방법에서 벗어나 전체 유전체를 읽어 분자 진단을 해도 비용 대비 상당 효과를 볼 수 있는 시대가 되었다. 단 한 번의 분자진단을 통해 기존의 다양한 분자 진단들을 한꺼번에 처리할 수 있어 매우 효율적이다.
개인 유전체 분석을 통한 중증 난치성 질환 및 퇴행성 질환의 조기 발견은 생명 연장 및 삶의 질 향상과 직결된다. 유전자 변이, 유전자 SNP(Single Nucleotide Polymorphism), 유전자 CNV(Copy Number Variation)가 질병에 미치는 상관 관계가 불명확함에도 불구하고 특정 질환 발병 가능성을 예측하여 발병 위험도를 알리는 스크리닝 지표로 사용되고 있다.
< Myriad genetics사의 BRACAnalysis 출처: https://www.myriad.com >
대표적인 성공 사례는 유방암과 관련된 상품으로 Myriad genetics사의 RACAnalysis(매출액: 7,000억)와 Genomic Health사가 출시한 OncotypeDX(매출액: 2,000억)가 있다. Myriad Genetics의 BRAC Analysis는 BRCA1 및 BRCA2 유전자 변이를 분석하는 유전자 진단 제품이다. 질병 예측을 위한 유전자 검사는 미국에서 DCT(Direct to Consumer Genetic Test)로 상업화되어 있다. 23andMe, deCODE Genetics, Navigenics 등은 유전체 분석을 통해 당뇨, 심근경색, 전립선암 등 20-90개 질환에 대한 유전적 형질을 분석하여 질병 예측 진단 서비스를 제공하고 있다.
< DCT 서비스 : 23andMe >
유전자 진단을 통한 질병 진단 검사는 개인 및 환자별 특정 유전자 유무에 따라 특정 질환에 대한 발병 가능성을 예측함으로써 질병 조기 진단, 생활 습관 조정 및 예방 요법을 통해 질병 발병 시기를 늦추어 줄 것으로 기대된다. 또한 상당수의 약물 부작용 사례에서 보듯이 동일한 질환을 가진 환자가 동일한 의약품에 대해 서로 상이한 반응을 보이듯 환자별 유전적 차이로 인해 특정 유전자 변이가 특정 치료제의 안전성, 유효성, 약물 용량에 미치는 영향 평가 등을 위한 주요 도구로써 활용될 수 있다. 유전자 진단을 통한 약물사전 검사는 환자별 특정 유전자 유무에 따라 특정 치료제의 안전성, 유효성, 약물 용량을 결정함으로써 약물 요법 최적화 및 약화 사고를 줄 일 수 있을 것이다.
유전체 해독 기술 발달로 유전체 해독 데이터 생산량은 천문학적으로 증가하고 있으나 방대한 정보를 저장하고 분석하여 의미있는 결과를 이끌어 내기는 상당히 어렵기 때문에 바이오 빅 데이터(Bio-Big Data)를 저장, 분석하여 유의미한 정보를 도출하는 바이오정보학의 발전이 시급하다.
작성자 : DX팀 조관희 팀장
Posted by 人Co
- Response
- No Trackback , No Comment
- RSS :
- https://post-blog.insilicogen.com/blog/rss/response/173
Trackback URL : 이 글에는 트랙백을 보낼 수 없습니다