p-value(유의 확률)의 역설



전 세계 30만 명이 넘는 확진자와 증가세를 보이는
코비드-19(COVID-19, Corona virus disease 2019)!
세계보건기구 WHO가 최고 경보단계 '팬데믹(pandemic)'을
선언한 지금 어느 때보다 바이오 연구가 높은 관심과 집중을 받고 있습니다.
오늘은 이와 관련한  p-value에 대해 알아보도록 하겠습니다!
 
먼저 p-value란 무엇일까요? 불과 서너 달 사이 코비드-19와 관련하여 출판된 논문만 1만여 편에 달하는데요. (국제 코비드-19 연관 연구 현황) 확산세 경감과 치료제, 백신 개발 등 다양한 생명연구에서 사용되는 통계지표 p-value! 그 정의부터 연구사례까지 차근차근 보겠습니다!

p-value 정의
p-value(유의 확률, significance probability)
p-value는 '귀무가설(Null hypothesis)이 맞는다고 가정할 때 얻은 결과보다 극단적인 결과(관측 결과)가 나타날 확률'로 정의됩니다. 일반적으로 p-value < 0.05 혹은 0.01을 기준으로 합니다. 계산된 p-value가 기준값보다 작은 경우 귀무가설을 기각하는 것으로 즉, 극단적으로 귀무가설이 일어날 확률이 매우 낮은 상태를 의미합니다.
 
단측검정(위 : left-tail p-value, 아래 : right-tail p-value)



코비드-19 연구 단측검정 사례 : 지난 3월 19일에 한국방사선학회지(Korean J Radiol)에 게재된 논문입니다.(Korean J Radiol, 2020) 이 연구의 가설은 '코비드-19 감염 천식 증상을 보이는 환자 중 폐섬유화(fibrosis)가 나타난 경우는 나이가 많을수록 높다.'는 것입니다. 귀무가설은 '환자 중 섬유화가 일어난 사람과 일어나지 않은 사람의 평균 연령은 같다.' 입니다 . 여기서 세워진 가설은 '섬유화가 같이 일어난 환자의 평균 나이가 일어나지 않은 환자보다 많다.' 라고 할 수 있습니다. 이렇게 대립가설에서 '높다.' 혹은 '낮다.' 라는 방향성이 있는 경우 우리는 단측검정을 사용합니다.
 
양측검정



[출처] 유의 확률

코비드-19 연구 양측검정 사례 : 지난 2월 Cell Discovery에 게재된 논문입니다. ACE2 라는 SARS-coronavirus 수용체 단백질의 서열이 인종 별로 차이가 있는지를 확인한 연구입니다.(Cell Discov, 2020) 귀무가설은 인종 간 단백질 서열의 '차이가 없다.'이고 대립가설은 '차이가 있다.' 입니다. 이렇게 우리가 주장하는 가설의 방향성이 정해지지 않았을 때 우리는 양측검정을 사용할 수 있습니다.
 
미국통계학회(ASA, American Statistical Association) 2016 성명서
우리는 연구 과정에서 수립한 가설을 증명하기 위한 척도로 p-value를 사용합니다. 즉, 가설이 참인지 거짓인지를 가려내는 갈림길에 서게 되는 것이죠. 앞서 '극단적인 결과가 실제로 관측될 확률' 부분을 잘 읽어보세요! p-value=0.05라는 것은 귀무가설을 참이라고 가정할 때 대립가설에 따른 결과가 우연히 일어날 확률이 5%라는 것을 의미할 뿐, p-value 그 자체로는 어떤 가설의 참/거짓 여부를 판단하는 지표가 될 수 없다는 것이죠.
 
2016년 3월 미국통계학회는 이러한 과학자들의 p-value에 대한 의존성에 일침을 가합니다.
성명의 6가지 원칙 원문:미국통계학회, 2017
1. P-values can indicate how incompatible the data are with a specified statistical model. 
 - P-value는 주어진 데이터가 얼마만큼 통계모델을 따르지 않는지를 나타낼 수 있다.
2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
 - P-value는 대립가설이 참일 확률, 또는, 우연히 발생할 확률을 측정하는 값이 아니다.
3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
 - 어떤 과학적, 정책적인 결론의 근거로 p-value만을 그 지표로써 사용해서는 안 된다.
4. Proper inference requires full reporting and transparency.
 - 합당한 추론을 위해 완전한 보고와 투명성이 보장되어야 한다.
5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
 - p-value는 연구 결과에 중요성이나 효과의 크기를 측정한 값이 아니다.
6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis. 
 - p-value 자체만으로는 모형 또는 가설에 대한 좋은 증거가 되지 못한다.


논지는 'p-value 자체는 내가 세운 가설이 참인지 거짓인지를 판단하는 근거의 하나일 뿐이다.' 입니다. 즉, 이 값이 나의 연구 결과의 중요성이나 효과의 크기를 설명하는 데 있어서 어떤 근거를 제시하지 않는다는 것입니다. 여기서 오해하시면 안 됩니다. 미국통계학회는 p-value가 갖는 의미를 곡해하지 말고 본 의미에 맞게 사용하고 해석하자는 것이 핵심입니다. 통계 도구를 사용하는 많은 사람이 쉽게 빠지게 되는 오류중의 하나인 '확실성'에 대한 추종은 그동안 p-value를 일종의 절대적 지표로써 사용되게 하였습니다.

p-value의 오용
그렇다면 우리가 겪을 수 있는 p-value에 의존한 결론 도출이 가져오는 오류는 어떤 것들이 있을까요? 아래 두 가지 오류를 살펴보도록 하겠습니다.

1. 2종 오류(Type II error)로 인한 실제 의미 있는 결과의 배제
2. 기준점 5%를 맞추기 위한 지나친 표본 수의 증가

첫 번째 오류는 이렇습니다. 질병 A 환자군과 정상인 군에서 유전자 B 발현 값 평균을 검정한 결과 p-value=0.06가 나왔다면 우리는 유전자 B와 질병 연관성이 없다고 결론을 내려왔습니다. p-value의 정의로 해석해보면 다음과 같습니다. '질병 A 환자군과 정상인의 유전자 B 발현 값 평균이 같을 확률은 6%이다. = 100번의 테스트 중 6번의 결과가 A, B에서 동일하게 확인되었다.' 뭔가 이상하지 않나요? 전자는 p-value 0.05 이하의 경우 유(有) 의미(반대로 p-value 0.05 초과는 무(無)의미)하다는 확정성에 근거하여 질병 A와 유전자 B 연관성을 부정하였습니다. 하지만 실제로 4%, 5%, 6%가 유/무의미를 결정지을 만큼의 절대적 기준이 될 수 있을까요?
두 번째 오류는 먼저 p-value 계산에 사용되는 통계치인 Z 통계치(Z statistic) 산정식입니다.



뭔가 이상한 점을 찾으셨나요? 바로 'n' 표본 수입니다. 동일한 표본 평균과 분산을 가질 때 이 n이 커지게 되면 p-value는 낮아지지는 경향이 있습니다.

마무리
이번 글에서는 통계학에서의 p-value의 의미와 해석 방법 그리고 오용했을 때 발생할 수 있는 오류에 대해 살펴보았습니다. 어떠신가요? 그동안 여러분들을 옭아매던 p-value < 0.05의 굴레에서 벗어나셨나요? 생물학에는 정말이지 셀 수조차 없는 변수들이 존재합니다. 그중에서 질서를 찾기 위해 하나의 지표로써 p-value는 분명히 의미를 갖습니다. 통계 도구의 올바른 적용과 해석으로 가치 있는, 즐거운 연구 되시기를 바랄게요~!

참고문헌

작성자 : RDC 경동수 주임

Posted by 人Co

2020/03/25 16:11 2020/03/25 16:11
Response
No Trackback , No Comment
RSS :
https://post-blog.insilicogen.com/blog/rss/response/341

Trackback URL : 이 글에는 트랙백을 보낼 수 없습니다



« Previous : 1 : ... 46 : 47 : 48 : 49 : 50 : 51 : 52 : 53 : 54 : ... 374 : Next »